This paper presents an extension of the BIM technology that allows to manage information during the entire lifecycle of an AEC project. Usually, AEC projects and facility management are dissociated. Our Building Information System plays a central role in the improvement of the design and the management process. The building activity generates a great number of data and information of various kinds. The management and the communication of these data by the various participants is complex. Our design and management methods use IFC files to facilitate the sharing process for a better qualification and validation of data.
This paper describes potential challenges and opportunities for using thermal simulation tools to optimize building performance. After reviewing current trends in thermal simulation, it outlines major criteria for the evaluation of building thermal simulation tools based on specifications and capabilities in interoperability. Details are discussed including workflow of data exchange of multiple thermal analyses such as the BIM-based application. The present analysis focuses on selected thermal simulation tools that provide functionalities to exchange data with other tools in order to obtain a picture of its basic work principles and to identify selection criteria for generic thermal tools in BIM. Significances and barriers to integration design with BIM and building thermal simulation tools are also discussed
a b s t r a c tHaving a clear view of events that occurred over time is a difficult objective to achieve in digital investigations (DI). Event reconstruction, which allows investigators to understand the timeline of a crime, is one of the most important step of a DI process. This complex task requires exploration of a large amount of events due to the pervasiveness of new technologies nowadays. Any evidence produced at the end of the investigative process must also meet the requirements of the courts, such as reproducibility, verifiability, validation, etc. For this purpose, we propose a new methodology, supported by theoretical concepts, that can assist investigators through the whole process including the construction and the interpretation of the events describing the case. The proposed approach is based on a model which integrates knowledge of experts from the fields of digital forensics and software development to allow a semantically rich representation of events related to the incident. The main purpose of this model is to allow the analysis of these events in an automatic and efficient way. This paper describes the approach and then focuses on the main conceptual and formal aspects: a formal incident modelization and operators for timeline reconstruction and analysis.
AbstractHaving a clear view of events that occurred over time is a difficult objective to achieve in digital investigations (DI). Event reconstruction, which allows investigators to understand the timeline of a crime, is one of the most important step of a DI process. This complex task requires exploration of a large amount of events due to the pervasiveness of new technologies nowadays. Any evidence produced at the end of the investigative process must also meet the requirements of the courts, such as reproducibility, verifiability, validation, etc. For this purpose, we propose a new methodology, supported by theoretical concepts, that can assist investigators through the whole process including the construction and the interpretation of the events describing the case. The proposed approach is based on a model which integrates knowledge of experts from the fields of digital forensics and software development to allow a semantically rich representation of events related to the incident. The main purpose of this model is to allow the analysis of these events in an automatic and efficient way. This paper describes the approach and then focuses on the main conceptual and formal aspects: a formal incident modelization and operators for timeline reconstruction and analysis.
Abstract. With the emergence of mobile devices (Smart Phone, PDA, UMPC, game consoles, etc.), learning is changing from electronic learning (e-Learning) to mobile learning (m-learning). In fact, due to the mobility feature, it seems that the m-learning have to be adapted with the change within the context. Several researches addressed this issue and implemented a mobile learning environment to prove its usefulness and feasibility in various domains. In this article, we conduct a comparative study between a list of mobile learning architectures and methods that are presented in the literature. The performance of these architectures is evaluated based on several criteria, such as the adaptation management, which is an important parameter for the management and customization of the learning resources for the learners, as well as the environment, which is a core part of mobile learning systems.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.