Slippery and hydrophilic surfaces find critical applications in areas as diverse as biomedical devices, microfluidics, antifouling, and underwater robots. Existing methods to achieve such surfaces rely mostly on grafting hydrophilic polymer brushes or coating hydrogel layers, but these methods suffer from several limitations. Grafted polymer brushes are prone to damage and do not provide sufficient mechanical compliance due to their nanometer‐scale thickness. Hydrogel coatings are applicable only for relatively simple geometries, precluding their use for the surfaces with complex geometries and features. Here, a new method is proposed to interpenetrate hydrophilic polymers into the surface of diverse polymers with arbitrary shapes to form naturally integrated “hydrogel skins.” The hydrogel skins exhibit tissue‐like softness (Young's modulus ≈ 30 kPa), have uniform and tunable thickness in the range of 5–25 µm, and can withstand prolonged shearing forces with no measurable damage. The hydrogel skins also provide superior low‐friction, antifouling, and ionically conductive surfaces to the polymer substrates without compromising their original mechanical properties and geometry. Applications of the hydrogel skins on inner and outer surfaces of various practical polymer devices including medical tubing, Foley catheters, cardiac pacemaker leads, and soft robots on massive scales are further demonstrated.
This article provides a broad overview of the interaction between neuropeptides and inflammatory mediators as it pertains to diabetic wound healing. Abnormal wound healing is a major complication of both type I and type II diabetes and is the most frequent cause of non-traumatic lower limb amputation. Wound healing requires the orchestrated integration of complex biological and molecular events. Inflammation, proliferation and migration of cells followed by angiogenesis and re-epithelization are essential phases of wound healing. The link between wound healing and the nervous system is clinically apparent as peripheral neuropathy is reported in 30–50% of diabetic patients and is the most common and sensitive predictor of foot ulceration. The bidirectional connection between the nervous and the immune systems and the role it plays in wound healing has emerged as one of the focal features of the wound healing dogma. The mediators of this connection include neuropeptides and the cytokines released from different cells including immune and cutaneous cells. Therefore, to develop successful wound healing therapies, it is vital to understand in depth the signaling pathways in the neuro-immune axis and their implication in diabetic wound healing.
Multiple reports implicated the function of G protein-coupled receptor (GPR)-30 with nongenomic effects of estrogen, suggesting that GPR30 might be a G-protein coupled estrogen receptor. However, the findings are controversial and the expression pattern of GPR30 on a cell type level as well as its function in vivo remains unclear. Therefore, the objective of this study was to identify cell types that express Gpr30 in vivo by analyzing a mutant mouse model that harbors a lacZ reporter (Gpr30-lacZ) in the Gpr30 locus leading to a partial deletion of the Gpr30 coding sequence. Using this strategy, we identified the following cell types expressing Gpr30: 1) an endothelial cell subpopulation in small arterial vessels of multiple tissues, 2) smooth muscle cells and pericytes in the brain, 3) gastric chief cells in the stomach, 4) neuronal subpopulations in the cortex as well as the polymorph layer of the dentate gyrus, 5) cell populations in the intermediate and anterior lobe of the pituitary gland, and 6) in the medulla of the adrenal gland. In further experiments, we aimed to decipher the function of Gpr30 by analyzing the phenotype of Gpr30-lacZ mice. The body weight as well as fat mass was unchanged in Gpr30-lacZ mice, even if fed with a high-fat diet. Flow cytometric analysis revealed lower frequencies of T cells in both sexes of Gpr30-lacZ mice. Within the T-cell cluster, the amount of CD62L-expressing cells was clearly reduced, suggesting an impaired production of T cells in the thymus of Gpr30-lacZ mice.
Bioadhesives such as tissue adhesives, hemostatic agents, and tissue sealants have potential advantages over sutures and staples for wound closure, hemostasis, and integration of implantable devices onto wet tissues. However, existing bioadhesives display several limitations including slow adhesion formation, weak bonding, low biocompatibility, poor mechanical match with tissues, and/or lack of triggerable benign detachment. Here, we report a bioadhesive that can form instant tough adhesion on various wet dynamic tissues and can be benignly detached from the adhered tissues on demand with a biocompatible triggering solution. The adhesion of the bioadhesive relies on the removal of interfacial water from the tissue surface, followed by physical and covalent cross-linking with the tissue surface. The triggerable detachment of the bioadhesive results from the cleavage of bioadhesive’s cross-links with the tissue surface by the triggering solution. After it is adhered to wet tissues, the bioadhesive becomes a tough hydrogel with mechanical compliance and stretchability comparable with those of soft tissues. We validate in vivo biocompatibility of the bioadhesive and the triggering solution in a rat model and demonstrate potential applications of the bioadhesive with triggerable benign detachment in ex vivo porcine models.
Wound healing is a physiological reparative response to injury and a well-orchestrated process that involves hemostasis, cellular migration, proliferation, angiogenesis, extracellular matrix deposition, and wound contraction and re-epithelialization. However, patients with type 2 diabetes mellitus (T2D) are frequently afflicted with impaired wound healing that progresses into chronic wounds or diabetic ulcers, and may lead to complications including limb amputation. Herein, we investigate the potential role of microRNA-26a (miR-26a) in a diabetic model of wound healing. Expression of miR-26a is rapidly induced in response to high glucose in endothelial cells (ECs). Punch skin biopsy wounding of db/db mice revealed increased expression of miR-26a (~3.5-fold) four days post-wounding compared to that of WT mice. Local administration of a miR-26a inhibitor, LNA-anti-miR-26a, induced angiogenesis (up to ~80%), increased granulation tissue thickness (by 2.5-fold) and accelerated wound closure (53% after nine days) compared to scrambled anti-miR controls in db/db mice. These effects were independent of altered M1/M2 macrophage ratios. Mechanistically, inhibition of miR-26a increased its target gene SMAD1 in ECs nine days post-wounding of diabetic mice. In addition, high glucose reduced activity of the SMAD1-3’-UTR. Diabetic dermal wounds treated with LNA-anti-miR-26a had increased expression of ID1, a downstream modulator or SMAD1, and decreased expression of the cell cycle inhibitor p27. These findings establish miR-26a as an important regulator on the progression of skin wounds of diabetic mice by specifically regulating the angiogenic response after injury, and demonstrate that neutralization of miR-26a may serve as a novel approach for therapy.
For decades, bioadhesive materials have garnered great attention due to their potential to replace sutures and staples for sealing tissues during minimally invasive surgical procedures. However, the complexities of delivering bioadhesives through narrow spaces and achieving strong adhesion in fluid‐rich physiological environments continue to present substantial limitations to the surgical translation of existing sealants. In this work, a new strategy for minimally invasive tissue sealing based on a multilayer bioadhesive patch, which is designed to repel body fluids, to form fast, pressure‐triggered adhesion with wet tissues, and to resist biofouling and inflammation is introduced. The multifunctional patch is realized by a synergistic combination of three distinct functional layers: i) a microtextured bioadhesive layer, ii) a dynamic, blood‐repellent hydrophobic fluid layer, and iii) an antifouling zwitterionic nonadhesive layer. The patch is capable of forming robust adhesion to tissue surfaces in the presence of blood, and exhibits superior resistance to bacterial adhesion, fibrinogen adsorption, and in vivo fibrous capsule formation. By adopting origami‐based fabrication strategies, it is demonstrated that the patch can be readily integrated with a variety of minimally invasive end effectors to provide facile tissue sealing in ex vivo porcine models, offering new opportunities for minimally invasive tissue sealing in diverse clinical scenarios.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.