SUMMARYIn most natural ecosystems a significant portion of carbon fixed through photosynthesis is allocated to the production and maintenance of fine roots, the ephemeral portion of the root system that absorbs growth-limiting moisture and nutrients. In turn, senescence of fine roots can be the greatest source of C input to forest soils. Consequently, important questions in ecology entail the extent to which increasing atmospheric CO^ may alter the allocation of carbon to, and demography of, fine roots. Using microvideo and image analysis technology, we demonstrate that elevated atmospheric CO^ increases the rates of both fine root production and mortality. Rates of root mortality also increased substantially as soil nitrogen availability increased, regardless of COg concentration. Nitrogen greatly infiuenced the proportional allocation of carbon to leaves vs. fine roots. The amount of available nitrogen in the soil appears to be the most important factor regulating fine root demography in Populus trees.
The nuclear factor-kappaB (NF-kappaB) transcription factor family has a crucial role in rapid responses to stress and pathogens. We show that the NF-kappaB subunit RelB is functionally associated with the aryl hydrocarbon receptor (AhR) and mediates transcription of chemokines such as IL-8 via activation of AhR and protein kinase A. RelB physically interacts with AhR and binds to an unrecognized RelB/AhR responsive element of the IL-8 promoter linking two signaling pathways to activate gene transcription. We found a time-dependent recruitment of AhR to the RelB/AhR responsive element site of IL-8 mediated by the AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin) and via activation of protein kinase A. Furthermore, NF-kappaB-binding sites that are preferentially recognized by RelB/p52 are a target for RelB/AhR complexes without addition of any stimuli, implicating the endogenous function of the AhR. RelB/AhR complexes are also found to bind on xenobiotic responsive element, and RelB drastically increases the 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced xenobiotic responsive element reporter activity. The interaction of RelB with AhR signaling, and AhR with NF-kappaB RelB signaling pathways represent a new mechanism of cross talk between the two transcription factors.
The even-aged northern hardwood forests of the Upper Great Lakes Region are undergoing an ecological transition during which structural and biotic complexity is increasing. Early-successional aspen (Populus spp.) and birch (Betula papyrifera) are senescing at an accelerating rate and are being replaced by middle-successional species including northern red oak (Quercus rubra), red maple (Acer rubrum), and white pine (Pinus strobus). Canopy structural complexity may increase due to forest age, canopy disturbances, and changing species diversity. More structurally complex canopies may enhance carbon (C) sequestration in old forests. We hypothesize that these biotic and structural alterations will result in increased structural complexity of the maturing canopy with implications for forest C uptake. At the University of Michigan Biological Station (UMBS), we combined a decade of observations of net primary productivity (NPP), leaf area index (LAI), site index, canopy tree-species diversity, and stand age with canopy structure measurements made with portable canopy lidar (PCL) in 30 forested plots. We then evaluated the relative impact of stand characteristics on productivity through succession using data collected over a nine-year period. We found that effects of canopy structural complexity on wood NPP (NPPw) were similar in magnitude to the effects of total leaf area and site quality. Furthermore, our results suggest that the effect of stand age on NPPw is mediated primarily through its effect on canopy structural complexity. Stand-level diversity of canopy-tree species was not significantly related to either canopy structure or NPPw. We conclude that increasing canopy structural complexity provides a mechanism for the potential maintenance of productivity in aging forests.
Aryl hydrocarbon receptor (AhR) activation by 2,3,7,8-tetrachlorodibenzio-p-dioxin (TCDD) leads to immune suppression associated with the induction of regulatory T cells (T reg ) expressing the transcription factor Foxp3. The immunological mechanisms of suppression are not well understood however dendritic cells (DC) are considered a key target for AhR-mediated immune suppression. Here we show that activation of AhR by TCDD induces DC indoleamine-2,3-dioxygenase 1 (IDO1) and indoleamine 2,3-dioxygenase-like protein (IDO2). Induction of IDO1 and IDO2 was also found in lung and spleen associated with an increase of the T reg marker Foxp3 in spleen of TCDD-treated C57BL/6 mice, which is suppressed by inhibition of IDO. These data indicate that AhR-activation is an important signaling pathway for IDO expression and suggest a critical role of IDO in the mechanism leading to the generation of T reg that mediates the immune suppression through activation of AhR.
Carbon (C) uptake rates in many forests are sustained, or decline only briefly, following disturbances that partially defoliate the canopy. The mechanisms supporting such functional resistance to moderate forest disturbance are largely unknown. We used a large-scale experiment, in which > 6700 Populus (aspen) and Betula (birch) trees were stem-girdled within a 39-ha area, to identify mechanisms sustaining C uptake through partial canopy defoliation. The Forest Accelerated Succession Experiment in northern Michigan, USA, employs a suite of C-cycling measurements within paired treatment and control meteorological flux tower footprints. We found that enhancement of canopy light-use efficiency and maintenance of light absorption maintained net ecosystem production (NEP) and aboveground wood net primary production (NPP) when leaf-area index (LAI) of the treatment forest temporarily declined by nearly half its maximum value. In the year following peak defoliation, redistribution of nitrogen (N) in the treatment forest from senescent early successional aspen and birch to non-girdled later successional species facilitated the recovery of total LAI to pre-disturbance levels. Sustained canopy physiological competency following disturbance coincided with a downward shift in maximum canopy height, indicating that compensatory photosynthetic C uptake by undisturbed, later successional subdominant and subcanopy vegetation supported C-uptake resistance to disturbance. These findings have implications for ecosystem management and modeling, demonstrating that forests may tolerate considerable leaf-area losses without diminishing rates of C uptake. We conclude that the resistance of C uptake to moderate disturbance depends not only on replacement of lost leaf area, but also on rapid compensatory photosynthetic C uptake during defoliation by emerging later successional species.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers