Traditional Chinese medicine encompasses a rich empirical knowledge of the use of plants for the treatment of disease. In addition, the microorganisms associated with medicinal plants are also of interest as the producers of the compounds responsible for the observed plant bioactivity. The present study has pioneered the use of genetic screening to assess the potential of endophytes to synthesize bioactive compounds, as indicated by the presence of non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) genes. The total DNA extracts of 30 traditional Chinese herbs, were screened for functional genes involved in the biosynthesis of bioactive compounds. The four PCR screens were successful in targeting four bacterial PKS, six bacterial NRPS, ten fungal PKS and three fungal NRPS gene fragments. Analysis of the detected endophyte gene fragments afforded consideration of the possible bioactivity of the natural products produced by endophytes in medicinal herbs. This investigation describes a rapid method for the initial screening of medicinal herbs and has highlighted a subset of those plants that host endophytes with biosynthetic potential. These selected plants can be the focus of more comprehensive endophyte isolation and natural product studies.
One hundred and thirty endophytic fungi isolated from 12 Chinese traditional medicinal plants collected at Yuanmou county and Dawei Mountain, Yunnan province, southwest China, were tested for antitumour and antifungal activities by MTT assay on human gastric tumour cell line BGC-823 and the growth inhibition test against 7 phytopathogenic fungi. The results showed that fermentation broths from 9.2% of the isolates exhibited antitumour activity and 30% exhibited antifungal activity, moreover, some of them exhibited broad-spectrum antifungal activity. The active isolates were identified to 32 taxa. The results indicate that the endophytic fungi of Chinese traditional medicinal plants are promising sources of novel bioactive compounds.
Intratumoral regulatory T cell (Treg) abundance associates with diminished anti-tumor immunity and poor prognosis in human cancers. Recent work demonstrates that CD25, the high affinity receptor subunit for IL-2, is a selective target for Treg depletion in mouse and human malignancies; however, anti-human CD25 antibodies have failed to deliver clinical responses against solid tumors due to bystander IL-2 receptor signaling blockade on effector T cells, which limits their anti-tumor activity.
Here we demonstrate potent single-agent activity of anti-CD25 antibodies optimized to deplete Tregs whilst preserving IL-2-STAT5 signaling on effector T cells, and demonstrate synergy with immune checkpoint blockade in vivo. Pre-clinical evaluation of an anti-human CD25 (RG6292) antibody with equivalent features demonstrates, in both non-human primates and humanized mouse models, efficient Treg depletion with no overt immune-related toxicities. Our data supports the clinical development of RG6292 and evaluation of novel combination therapies incorporating non-IL-2 blocking anti-CD25 antibodies in clinical studies.
A three dimensional (3D) porous framework-like N-doped carbon (PFNC) with a high specific surface area was successfully fabricated through ammonia doping and graphitization based on pomelo peel. The obtained PFNC exhibits an enhanced specific capacitance (260 F g(-1) at 1 A g(-1)) and superior cycling performance (capacitance retention of 84.2% after 10000 cycles at 10 A g(-1)) on account of numerous voids and pores which supply sufficient pathways for ion diffusion during cycling. Furthermore, a fabricated asymmetric PFNC//PFN device based on PFNC and porous flake-like NiO (PFN) arrays achieves a specific capacitance of 88.8 F g(-1) at 0.4 A g(-1) and an energy density of 27.75 Wh kg(-1) at a power density of 300 W kg(-1) and still retains 44 F g(-1) at 10 A g(-1) and 13.75 Wh kg(-1) at power density of 7500 W kg(-1). It is important that the device is able to supply two light-emitting diodes for 25 min, which demonstrates great application potential.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.