This paper presents two kinds of strategies to construct structure-preserving algorithms with homogeneous Neumann boundary conditions for the sine-Gordon equation, while most existing structure-preserving algorithms are only valid for zero or periodic boundary conditions. The first strategy is based on the conventional second-order central difference quotient but with a cell-centered grid, while the other is established on the regular grid but incorporated with summation by parts (SBP) operators. Both the methodologies can provide conservative semi-discretizations with different forms of Hamiltonian structures and the discrete energy. However, utilizing the existing SBP formulas, schemes obtained by the second strategy can directly achieve higher-order accuracy while it is not obvious for schemes based on the cell-centered grid to make accuracy improved easily. Further combining the symplectic Runge-Kutta method and the scalar auxiliary variable (SAV) approach, we construct symplectic integrators and linearly implicit energy-preserving schemes for the two dimensional sine-Gordon equation, respectively. Extensive numerical experiments demonstrate their effectiveness with the homogeneous Neumann boundary conditions.
In this paper, we develop a novel, linearly implicit and local energy-preserving scheme for the sine-Gordon equation. The basic idea is from the invariant energy quadratization approach to construct energy stable schemes for gradient systems, which are energy dispassion. We here take the sine-Gordon equation as an example to show that the invariant energy quadratization approach is also an efficient way to construct linearly implicit and local energy-conserving schemes for energyconserving systems. Utilizing the invariant energy quadratization approach, the sine-Gordon equation is first reformulated into an equivalent system, which inherits a modified local energy conservation law. The new system are then discretized by the conventional finite difference method and a semi-discretized system is obtained, which can conserve the semi-discretized local energy conservation law. Subsequently, the linearly implicit structure-preserving method is applied for the resulting semidiscrete system to arrive at a fully discretized scheme. We prove that the resulting scheme can exactly preserve the discrete local energy conservation law. Moveover, with the aid of the classical energy method, an unconditional and optimal error estimate for the scheme is established in discrete H 1 h -norm. Finally, various numerical examples are addressed to confirm our theoretical analysis and demonstrate the advantage of the new scheme over some existing local structure-preserving schemes.
In this paper, we develop a novel class of arbitrarily high-order energy-preserving schemes for the Camassa-Holm equation. With the aid of the invariant energy quadratization approach, the Camassa-Holm equation is first reformulated into an equivalent system with a quadratic energy functional, which inherits a modified energy conservation law. The new system are then discretized by the standard Fourier pseudo-spectral method, which can exactly preserve the semi-discrete energy conservation law. Subsequently, the Runge-Kutta method and the Gauss collocation method are applied for the resulting semi-discrete system to arrive at some arbitrarily high-order fully discrete schemes. We prove that the schemes provided by the Runge-Kutta method with the certain condition and the Gauss collocation method can conserve the discrete energy conservation law. Numerical results are addressed to confirm accuracy and efficiency of the proposed schemes.
In this article, a Fourier pseudospectral method, which preserves the conforal conservation la, is proposed for solving the damped nonlinear Schrödinger equation. Based on the energy method and the semi‐norm equivalence between the Fourier pseudospectral method and the finite difference method, a priori estimate for the new method is established, which shows that the proposed method is unconditionally convergent with order of
O
(
normalτ
2
+
J
1
−
r
)
in the discrete
L
∞
‐norm, where
normalτ
is the time step and
J
is the number of collocation points used in the spectral method. Some numerical results are addressed to confirm our theoretical analysis.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.