Background Predictions in pregnancy care are complex because of interactions among multiple factors. Hence, pregnancy outcomes are not easily predicted by a single predictor using only one algorithm or modeling method. Objective This study aims to review and compare the predictive performances between logistic regression (LR) and other machine learning algorithms for developing or validating a multivariable prognostic prediction model for pregnancy care to inform clinicians’ decision making. Methods Research articles from MEDLINE, Scopus, Web of Science, and Google Scholar were reviewed following several guidelines for a prognostic prediction study, including a risk of bias (ROB) assessment. We report the results based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Studies were primarily framed as PICOTS (population, index, comparator, outcomes, timing, and setting): Population: men or women in procreative management, pregnant women, and fetuses or newborns; Index: multivariable prognostic prediction models using non-LR algorithms for risk classification to inform clinicians’ decision making; Comparator: the models applying an LR; Outcomes: pregnancy-related outcomes of procreation or pregnancy outcomes for pregnant women and fetuses or newborns; Timing: pre-, inter-, and peripregnancy periods (predictors), at the pregnancy, delivery, and either puerperal or neonatal period (outcome), and either short- or long-term prognoses (time interval); and Setting: primary care or hospital. The results were synthesized by reporting study characteristics and ROBs and by random effects modeling of the difference of the logit area under the receiver operating characteristic curve of each non-LR model compared with the LR model for the same pregnancy outcomes. We also reported between-study heterogeneity by using τ2 and I2. Results Of the 2093 records, we included 142 studies for the systematic review and 62 studies for a meta-analysis. Most prediction models used LR (92/142, 64.8%) and artificial neural networks (20/142, 14.1%) among non-LR algorithms. Only 16.9% (24/142) of studies had a low ROB. A total of 2 non-LR algorithms from low ROB studies significantly outperformed LR. The first algorithm was a random forest for preterm delivery (logit AUROC 2.51, 95% CI 1.49-3.53; I2=86%; τ2=0.77) and pre-eclampsia (logit AUROC 1.2, 95% CI 0.72-1.67; I2=75%; τ2=0.09). The second algorithm was gradient boosting for cesarean section (logit AUROC 2.26, 95% CI 1.39-3.13; I2=75%; τ2=0.43) and gestational diabetes (logit AUROC 1.03, 95% CI 0.69-1.37; I2=83%; τ2=0.07). Conclusions Prediction models with the best performances across studies were not necessarily those that used LR but also used random forest and gradient boosting that also performed well. We recommend a reanalysis of existing LR models for several pregnancy outcomes by comparing them with those algorithms that apply standard guidelines. Trial Registration PROSPERO (International Prospective Register of Systematic Reviews) CRD42019136106; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=136106
BACKGROUND Predictions in pregnancy care are complex because of interactions among multiple factors. Hence, pregnancy outcomes are not easily predicted by a single predictor using only one algorithm or modeling method. OBJECTIVE This study aims to review and compare the predictive performances between logistic regression (LR) and other machine learning algorithms for developing or validating a multivariable prognostic prediction model for pregnancy care to inform clinicians’ decision making. METHODS Research articles from MEDLINE, Scopus, Web of Science, and Google Scholar were reviewed following several guidelines for a prognostic prediction study, including a risk of bias (ROB) assessment. We report the results based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Studies were primarily framed as PICOTS (population, index, comparator, outcomes, timing, and setting): Population: men or women in procreative management, pregnant women, and fetuses or newborns; Index: multivariable prognostic prediction models using non-LR algorithms for risk classification to inform clinicians’ decision making; Comparator: the models applying an LR; Outcomes: pregnancy-related outcomes of procreation or pregnancy outcomes for pregnant women and fetuses or newborns; Timing: pre-, inter-, and peripregnancy periods (predictors), at the pregnancy, delivery, and either puerperal or neonatal period (outcome), and either short- or long-term prognoses (time interval); and Setting: primary care or hospital. The results were synthesized by reporting study characteristics and ROBs and by random effects modeling of the difference of the logit area under the receiver operating characteristic curve of each non-LR model compared with the LR model for the same pregnancy outcomes. We also reported between-study heterogeneity by using <i>τ<sup>2</sup></i> and <i>I<sup>2</sup></i>. RESULTS Of the 2093 records, we included 142 studies for the systematic review and 62 studies for a meta-analysis. Most prediction models used LR (92/142, 64.8%) and artificial neural networks (20/142, 14.1%) among non-LR algorithms. Only 16.9% (24/142) of studies had a low ROB. A total of 2 non-LR algorithms from low ROB studies significantly outperformed LR. The first algorithm was a random forest for preterm delivery (logit AUROC 2.51, 95% CI 1.49-3.53; <i>I<sup>2</sup></i>=86%; <i>τ<sup>2</sup></i>=0.77) and pre-eclampsia (logit AUROC 1.2, 95% CI 0.72-1.67; <i>I<sup>2</sup></i>=75%; <i>τ<sup>2</sup></i>=0.09). The second algorithm was gradient boosting for cesarean section (logit AUROC 2.26, 95% CI 1.39-3.13; <i>I<sup>2</sup></i>=75%; <i>τ<sup>2</sup></i>=0.43) and gestational diabetes (logit AUROC 1.03, 95% CI 0.69-1.37; <i>I<sup>2</sup></i>=83%; <i>τ<sup>2</sup></i>=0.07). CONCLUSIONS Prediction models with the best performances across studies were not necessarily those that used LR but also used random forest and gradient boosting that also performed well. We recommend a reanalysis of existing LR models for several pregnancy outcomes by comparing them with those algorithms that apply standard guidelines. CLINICALTRIAL PROSPERO (International Prospective Register of Systematic Reviews) CRD42019136106; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=136106
This study aimed to investigate the possible incidence of visual light perceptions (VLPs) during radiation therapy (RT). We analyzed whether VLPs could be affected by differences in the radiation energy, prescription doses, age, sex, or RT locations, and whether all VLPs were caused by radiation. From November 2016 to August 2018, a total of 101 patients who underwent head-and-neck or brain RT were screened. After receiving RT, questionnaires were completed, and the subjects were interviewed. Random forests (RF), a tree-based machine learning algorithm, and logistic regression (LR) analyses were compared by the area under the curve (AUC), and the algorithm that achieved the highest AUC was selected. The dataset sample was based on treatment with non-human units, and a total of 293 treatment fields from 78 patients were analyzed. VLPs were detected only in 122 of the 293 exposure portals (40.16%). The dataset was randomly divided into 80% and 20% as the training set and test set, respectively. In the test set, RF achieved an AUC of 0.888, whereas LR achieved an AUC of 0.773. In this study, the retina fraction dose was the most important continuous variable and had a positive effect on VLP. Age was the most important categorical variable. In conclusion, the visual light perception phenomenon by the human body during RT is induced by radiation rather than being a self-suggested hallucination or induced by phosphenes.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers