Manipulation of the chemical vapor deposition graphene synthesis conditions, such as operating P, T, heating/cooling time intervals, and precursor gas concentration ratios (CH/H), allowed for synthesis of polycrystalline single-layered graphene with controlled grain sizes. The graphene samples were then suspended on 8 μm diameter patterned holes on a silicon-nitride (SiN) substrate, and the in-plane thermal conductivities k(T) for 320 K < T < 510 K were measured to be 2660-1230, 1890-1020, and 680-340 W/m·K for average grain sizes of 4.1, 2.2, and 0.5 μm, respectively, using an opto-thermal Raman technique. Fitting of these data by a simple linear chain model of polycrystalline thermal transport determined k = 5500-1980 W/m·K for single-crystal graphene for the same temperature range above; thus, significant reduction of k was achieved when the grain size was decreased from infinite down to 0.5 μm. Furthermore, detailed elaborations were performed to assess the measurement reliability of k by addressing the hole-edge boundary condition, and the air-convection/radiation losses from the graphene surface.
Purpose
– The purpose of this paper is to describe a compact wheelchair, which has two 3-degrees of freedom (DOF) legs and a 1-DOF base (the total DOF of the leg system is 7) for stair-climbing, and wheels for flat surface driving.
Design/methodology/approach
– The proposed wheelchair climbs stairs using the two 3-DOF legs with boomerang-shaped feet. The leg mechanisms are folded into the compact wheelchair body when the wheelchair moves over flat surfaces. The authors also propose a simple estimation method of stair shape using laser distance sensors, and a dual motor driving system to increase joint power.
Findings
– The proposed wheelchair can climb arbitrary height and width stairs by itself, even when they are slightly curved. During climbing, the trajectory of the seat position is linear to guarantee the comfort of rider, and the wheelchair always keeps a stable condition to ensure the stability in an emergency stop.
Originality/value
– The wheelchair mechanism with foldable legs and driving wheels enables smooth stair climbing, efficient flat surface driving and additional useful motions such as standing and tilting.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.