Although olfaction is a primary mode of communication, its importance in sexual selection remains understudied. Here, using the butterfly Bicyclus anynana, we address all the parameters of importance to sexual selection for a male olfactory signal. We show that variation in the male sex pheromone composition indicates male identity and male age. Courting males of different ages display small absolute (c. 200 ng) but large relative (100%) change of one specific pheromone component (hexadecanal) which, unlike the other components, showed no heritability. Females prefer to mate with mid-aged over younger males and the pheromone composition is sufficient to determine this preference. Surprisingly refined information is thus present in the male olfactory signal and is used for sexual selection. Our data also reveal that there may be no 'lek paradox' to resolve once the precise signal of importance to females is identified, as hexadecanal is, as expected, depleted in additive genetic variation.
Among the animals, the Lepidoptera (moths and butterflies) are second only to beetles in number of described species and are known for their striking intra- and interspecific diversity. Within species, sexual dimorphism is a source of variation in life history (e.g., sexual size dimorphism and protandry), morphology (e.g., wing shape and color pattern), and behavior (e.g., chemical and visual signaling). Sexual selection and mating systems have been considered the primary forces driving the evolution of sexual dimorphism in the Lepidoptera, and alternative hypotheses have been neglected. Here, we examine opportunities for sexual selection, natural selection, and the interplay between the two forces in the evolution of sexual differences in the moths and butterflies. Our primary goal is to identify mechanisms that either facilitate or constrain the evolution of sexual dimorphism, rather than to resolve any perceived controversy between hypotheses that may not be mutually exclusive.
For almost a century, biologists have used trait scaling relationships (bi-variate scatter-plots of trait size versus body size) to characterize phenotypic variation within populations, and to compare animal shape across populations or species. Scaling relationships are a popular metric because they have long been thought to reflect underlying patterns of trait growth and development. However, the physiological mechanisms generating animal scaling are not well understood, and it is not yet clear how scaling relationships evolve. Here we review recent advances in developmental biology, genetics, and physiology as they pertain to the control of growth of adult body parts in insects. We summarize four mechanisms known to influence either the rate or the duration of cell proliferation within developing structures, and suggest how mutations in these mechanisms could affect the relative sizes of adult body parts. By reviewing what is known about these four processes, and illustrating how they may contribute to patterns of trait scaling, we reveal genetic mechanisms likely to be involved in the evolution of insect form.
BackgroundThere is spectacular morphological diversity in nature but lineages typically display a limited range of phenotypes. Because developmental processes generate the phenotypic variation that fuels natural selection, they are a likely source of evolutionary biases, facilitating some changes and limiting others. Although shifts in developmental regulation are associated with morphological differences between taxa, it is unclear how underlying mechanisms affect the rate and direction of evolutionary change within populations under selection.Here we focus on two ecologically relevant features of butterfly wing color patterns, eyespot size and color composition, which are similarly and strongly correlated across the serially repeated eyespots. Though these two characters show similar patterns of standing variation and covariation within a population, they differ in key features of their underlying development. We targeted pairs of eyespots with artificial selection for coordinated (concerted selection) versus independent (antagonistic selection) change in their color composition and size and compared evolutionary responses of the two color pattern characters.ResultsThe two characters respond to selection in strikingly different ways despite initially similar patterns of variation in all directions present in the starting population. Size (determined by local properties of a diffusing inductive signal) evolves flexibly in all selected directions. However, color composition (determined by a tissue-level response to the signal concentration gradient) evolves only in the direction of coordinated change. There was no independent evolutionary change in the color composition of two eyespots in response to antagonistic selection. Moreover, these differences in the directions of short-term evolutionary change in eyespot size and color composition within a single species are consistent with the observed wing pattern diversity in the genus.ConclusionBoth characters respond rapidly to selection for coordinated change, but there are striking differences in their response to selection for antagonistic, independent change across eyespots. While many additional factors may contribute to both short- and long-term evolutionary response, we argue that the compartmentalization of developmental processes can influence the diversification of serial repeats such as butterfly eyespots, even under strong selection.
Selection can facilitate diversification by inducing character displacement in mate choice traits that reduce the probability of maladaptive mating between lineages. Although reproductive character displacement (RCD) has been demonstrated in two-taxa case studies, the frequency of this process in nature is still debated. Moreover, studies have focused primarily on visual and acoustic traits, despite the fact that chemical communication is probably the most common means of species recognition. Here, we showed in a large, mostly sympatric, butterfly genus, a strong pattern of recurrent RCD for predicted male sex pheromone composition, but not for visual mate choice traits. Our results suggest that RCD is not anecdotal, and that selection for divergence in male sex pheromone composition contributed to reproductive isolation within the Bicyclus genus. We propose that selection may target olfactory mate choice traits as a more common sensory modality to ensure reproductive isolation among diverging lineages than previously envisaged.
Organisms are inherently modular, yet modules also evolve in response to selection for functional integration or functional specialization of traits. For serially repeated homologous traits, there is a clear expectation that selection on the function of individual traits will reduce the integration between traits and subdivide a single ancestral module. The eyespots on butterfly wings are one example of serially repeated morphological traits that share a common developmental mechanism but are subject to natural and sexual selection for divergent functions. Here, I test two hypotheses about the organization of the eyespot pattern into independent dorsal-ventral and anterior-posterior modules, using a graphical modeling technique to examine patterns of eyespot covariation among and within wing surfaces in the butterfly Bicyclus anynana. Although there is a hierarchical and complex pattern of integration among eyespots, the results show a surprising mismatch between patterns of eyespot integration and the developmental and evolutionary eyespot units identified in previous empirical studies. These results are discussed in light of the relationships between developmental, functional, and evolutionary modules, and they suggest that developmental sources of independent trait variation are often masked by developmental sources of trait integration.
Phenotypic variation is the raw material for selection that is ubiquitous for most traits in natural populations, yet the processes underlying phenotypic evolution or stasis often remain unclear. Here, we report phenotypic evolution in a mutant line of the butterfly Bicyclus anynana after outcrossing with the genetically polymorphic wild type population. The comet mutation modifies two phenotypic traits known to be under sexual selection in this butterfly: the dorsal forewing eyespots and the pheromone-producing structures. The original comet mutant line was inbred and remained phenotypically stable for at least seven years, but when outcrossed to the wild type population the outcrossed comet line surprisingly recovered the wild type phenotype within 8 generations at high (27 °C), but not at low (20 °C), developmental temperatures. Male mating success experiments then revealed that outcrossed comet males with the typical comet phenotype suffered from lower mating success, while mating success of outcrossed comet males resembling wild types was partially restored. We document a fortuitous case where the addition of genetic polymorphism around a spontaneous mutation could have allowed partial restoration of phenotypic robustness. We further argue that sexual selection through mate choice is likely the driving force leading to phenotypic robustness in our system.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers