Objective Inflammation in the bone microenvironment stimulates osteoclast differentiation, resulting in uncoupling of resorption and formation. Mechanisms contributing to the inhibition of osteoblast function in inflammatory diseases, however, have not been elucidated. Rheumatoid arthritis (RA) is a prototype of an inflammatory arthritis that results in focal loss of articular bone. The paucity of bone repair in inflammatory diseases such as RA raises compelling questions regarding the impact of inflammation on bone formation. The aim of this study was to establish the mechanisms by which inflammation regulates osteoblast activity. Methods We characterized an innovative variant of a murine model of arthritis in which inflammation is induced in C57BL/6J mice by transfer of arthritogenic K/B×N serum and allowed to resolve. Results In the setting of resolving inflammation, bone resorption ceased and appositional osteoblast-mediated bone formation was induced, resulting in repair of eroded bone. Resolution of inflammation was accompanied by striking changes in the expression of regulators of the Wnt/β-catenin pathway, which is critical for osteoblast differentiation and function. Down-regulation of the Wnt antagonists secreted frizzled-related protein 1 (sFRP1) and sFRP2 during the resolution phase paralleled induction of the anabolic and pro–matrix mineralization factors Wnt10b and DKK2, demonstrating the role of inflammation in regulating Wnt signaling. Conclusion Repair of articular bone erosion occurs in the setting of resolving inflammation, accompanied by alterations in the Wnt signaling pathway. These data imply that in inflammatory diseases that result in persistent articular bone loss, strict control of inflammation may not be achieved and may be essential for the generation of an anabolic microenvironment that supports bone formation and repair.
In rheumatoid arthritis (RA), synovial inflammation results in focal erosion of articular bone. Despite treatment attenuating inflammation, repair of erosions with adequate formation of new bone is uncommon in RA, suggesting that bone formation may be compromised at these sites. Dynamic bone histomorphometry was used in a murine model of RA to determine the impact of inflammation on osteoblast function within eroded arthritic bone. Bone formation rates at bone surfaces adjacent to inflammation were similar to those observed in nonarthritic bone; therefore, osteoblast activity is unlikely to compensate for the increased bone resorption at these sites. Within arthritic bone, the extent of actively mineralizing surface was reduced at bone surfaces adjacent to inflammation compared with bone surfaces adjacent to normal marrow. Consistent with the reduction in mineralized bone formation, there was a notable paucity of cells expressing the mid-to late stage osteoblast lineage marker alkaline phosphatase, despite a clear presence of cells expressing the early osteoblast lineage marker Runx2. In addition, several members of the Dickkopf and secreted Frizzled-related protein families of Wnt signaling antagonists were upregulated in arthritic synovial tissues, suggesting that inhibition of Wnt signaling could be one mechanism contributing to impaired osteoblast function within arthritic bone. Together, these data indicate that the presence of inflammation within arthritic bone impairs osteoblast capacity to form adequate mineralized bone, thus contributing to the net loss of bone and failure of bone repair at sites of focal bone erosion in RA.
The pattern of RANKL and OPG expression and the presence of RANK-expressing osteoclast precursor cells at sites of bone erosion in RA contributes to the generation of a local microenvironment that favours osteoclast differentiation and activity. These data provide further evidence implicating RANKL in the pathogenesis of arthritis-induced joint destruction.
A human ovarian small cell carcinoma line (BIN-67) expresses abundant calcitonin (CT) receptors (CTR) (143,000 per cell) that are coupled, to adenylate cyclase. The dissociation constants (Kd) for the CTrRs on these BIN-67 cells is -0.42 nM for salmon Cl and -4.6 nM for human CT. To clone a human CTR (hCTR), a BIN-67 cDNA library was screened using a cDNA probe from a porcine renal CTR (pClR) that we recently cloned. One positive clone of 3,588 bp was identified. Transfection of this cDNA into COS cells resulted in expression of receptors with high affinity for salmon CT (Kd = -0.44 nM) and for human CT (Kd = -5.4 nM). The expressed hCTR was coupled to adenylate cyclase. Northern analysis with the hCTR cDNA probe indicated a single transcript of -4.2 kb. The cloned cDNA encodes a putative peptide of 490 amino acids with seven potential transmembrane domains. The amino acid sequence of the hCTR is 73% identical to the pCTR, although the hCTR contains an insert of 16 amino acids between transmembrane domain I and II. The structural differences may account for observed differences in binding affinity between the porcine renal and human ovarian CI'Rs. The CTRs are closely related to the receptors for parathyroid hormoneparathyroid hormone-related peptide and secretin; these receptors comprise a distinct family of G protein-coupled seven transmembrane domain receptors. Interestingly, the hClTR sequence is remotely related to the cAMP receptor of Dictyostehlum discoideum (21% identical), but is not significantly related to other G protein-coupled receptor sequences now in the data bases. (J.
Receptor activator of nuclear factor-kappaB -ligand (RANKL), encoded by the gene TNFSF11, is required for osteoclastogenesis, and its expression is upregulated in pathologic bone loss. Transcript variants of TNFSF11 mRNA have been described that encode a membrane-bound and a putative secreted form of RANKL. We identify a TNFSF11 transcript variant that extends the originally identified transcript encoding secreted RANKL. We demonstrate that this TNFSF11 transcript variant is expressed by the human osteosarcoma cell line, Saos-2, and by both primary human T cells and Jurkat T cells. Of relevance to the production of RANKL in pathologic bone loss, expression of this secreted TNFSF11 transcript is upregulated in Jurkat T cells and primary human T cells upon activation. Furthermore, this transcript can be translated and secreted in Jurkat T cells in vitro and is able to support osteoclast differentiation. Our data highlight the complexity of the TNFSF11 genomic locus and demonstrate the potential for the expression of alternate mRNA transcripts encoding membrane-bound and secreted forms of RANKL. Implications of alternate mRNA transcripts encoding different RANKL protein isoforms should be carefully considered and specifically examined in future studies, particularly those implicating RANKL in pathologic bone loss.
Objective Inflammation in diseases such as rheumatoid arthritis (RA) stimulates osteoclast-mediated articular bone erosion and inhibits osteoblast-mediated bone formation, leading to a net loss of bone. Pro-inflammatory cytokines and antagonists of the Wnt signaling pathway have been implicated in the inhibition of osteoblast differentiation and activity in RA, contributing to the erosive process and impairing erosion healing. Importantly, osteoblast differentiation and function are also regulated by the osteogenic bone morphogenetic protein (BMP) signaling pathway, which is antagonized by BMP3. We therefore examined the potential role of BMP3 in inflammatory arthritis. Methods Two murine models of RA, K/BxN serum transfer arthritis and antigen-induced arthritis, were used to establish the temporal expression of BMP3 and the cellular sources of BMP3 mRNA and protein in inflammatory arthritis. To determine the effects of inflammation on expression of BMP3 in osteoblasts, murine calvarial osteoblasts were treated with pro-inflammatory cytokines and BMP3 expression was assessed. Results In both murine models of RA, BMP3 mRNA and protein are highly expressed by osteoblasts lining inflammation-bone interfaces late in the course of arthritis. Synovial tissues are not a significant source of BMP3. BMP3 expression is induced in osteocalcin-expressing osteoblasts in vitro following stimulation by TNF. Conclusion These data implicate BMP3 as a novel factor that may act locally to contribute to the erosive process and inhibit the repair of articular bone in RA through inhibition of osteoblast differentiation and function.
Nucleic acid (NA) sensing receptors were first described in the context of host defense. We now know that some endosomal NA sensors play a critical role in the development of systemic autoimmune diseases such as systemic lupus erythematosus, whereas cytosolic Cyclic GMP-AMP Synthase/Stimulator of IFN Genes (cGAS/STING) DNAdetecting pathway has been associated with monogenic autoinflammatory interferonopathies such as Aicardi-Goutieres and Education; collaboration; communication STING-associated vasculopathy with onset in infancy (SAVI). DNaseII hypomorphic patients and DNase-/-IFNaR-/-(double knockout [DKO]) mice also develop an autoinflammatory syndrome associated with an interferon signature. We now add to the description of an unusual clinical manifestation of DKO mice that involves the accrual of trabecular bone in long bone marrow and the formation of ectopic bone within the spleen. This aberrant bone formation is lost not only in STING-deficient but also in Unc93b1-deficient mice and, therefore, depends on the interplay of cells expressing cytosolic and endosomal NA sensing receptors.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers