SUMMARY
Amphisbaenians are legless reptiles that differ significantly from other vertebrate lineages. Most species dig underground galleries of similar diameter to that of the animal. We studied the muscle physiology and morphological attributes of digging effort in the Brazilian amphisbaenid Leposternon microcephalum (Squamata; Amphisbaenia), which burrows by compressing soil against the upper wall of the tunnel by means of upward strokes of the head. The individuals tested (<72 g) exerted forces on the soil of up to 24 N. These forces were possible because the fibres of the longissimus dorsi, the main muscle associated with burrowing, are highly pennated, thus increasing effective muscle cross-sectional area. The muscle is characterized by a metabolic transition along its length: proximal, medial and distal fibres are fast contracting and moderately oxidative, but fibres closer to the head are richer in citrate synthase and more aerobic in nature. Distal fibres, then, might be active mainly at the final step of the compression stroke, which requires more power. For animals greater than a given diameter,the work required to compress soil increases exponentially with body diameter. Leposternon microcephalum, and probably some other highly specialized amphisbaenids, are most likely constrained to small diameters and can increase muscle mass and effective muscle cross-sectional area by increasing body length, not body diameter.
When toads (Rhinella) are threatened they inflate their lungs and tilt the body towards the predator, exposing their parotoid macroglands. Venom discharge, however, needs a mechanical pressure onto the parotoids exerted by the bite of the predator. The structure of Rhinella jimi parotoids was described before and after manual compression onto the macroglands mimicking a predator attack. Parotoids are formed by honeycomb-like collagenous alveoli. Each alveolus contains a syncytial gland enveloped by a myoepithelium and is provided with a duct surrounded by differentiated glands. The epithelium lining the duct is very thick and practically obstructs the ductal lumen, leaving only a narrow slit in the centre. After mechanical compression the venom is expelled as a thin jet and the venom glands are entirely emptied. The force applied by a bite of a potential predator may increase alveolar pressure, forcing the venom to be expelled as a thin jet through the narrow ductal slit. We suggest that the mechanism for venom discharge within all bufonids is possibly similar to that described herein for Rhinella jimi and that parotoids should be considered as cutaneous organs separate from the rest of the skin specially evolved for an efficient passive defence.
The dominant hypothesis for the evolutionary origin of snakes from 'lizards' (non-snake squamates) is that stem snakes acquired many snake features while passing through a profound burrowing (fossorial) phase. To investigate this, we examined the visual pigments and their encoding opsin genes in a range of squamate reptiles, focusing on fossorial lizards and snakes. We sequenced opsin transcripts isolated from retinal cDNA and used microspectrophotometry to measure directly the spectral absorbance of the photoreceptor visual pigments in a subset of samples. In snakes, but not lizards, dedicated fossoriality (as in Scolecophidia and the alethinophidian Anilius scytale) corresponds with loss of all visual opsins other than RH1 (k max 490-497 nm); all other snakes (including less dedicated burrowers) also have functional sws1 and lws opsin genes. In contrast, the retinas of all lizards sampled, even highly fossorial amphisbaenians with reduced eyes, express functional lws, sws1, sws2 and rh1 genes, and most also express rh2 (i.e. they express all five of the visual opsin genes present in the ancestral vertebrate). Our evidence of visual pigment complements suggests that the visual system of stem snakes was partly reduced, with two (RH2 and SWS2) of the ancestral vertebrate visual pigments being eliminated, but that this did not extend to the extreme additional loss of SWS1 and LWS that subsequently occurred (probably independently) in highly fossorial extant scolecophidians and A. scytale. We therefore consider it unlikely that the ancestral snake was as fossorial as extant scolecophidians, whether or not the latter are para-or monophyletic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.