Quantum communications promises reliable transmission of quantum information, efficient distribution of entanglement and generation of completely secure keys. For all these tasks, we need to determine the optimal point-to-point rates that are achievable by two remote parties at the ends of a quantum channel, without restrictions on their local operations and classical communication, which can be unlimited and two-way. These two-way assisted capacities represent the ultimate rates that are reachable without quantum repeaters. Here, by constructing an upper bound based on the relative entropy of entanglement and devising a dimension-independent technique dubbed ‘teleportation stretching', we establish these capacities for many fundamental channels, namely bosonic lossy channels, quantum-limited amplifiers, dephasing and erasure channels in arbitrary dimension. In particular, we exactly determine the fundamental rate-loss tradeoff affecting any protocol of quantum key distribution. Our findings set the limits of point-to-point quantum communications and provide precise and general benchmarks for quantum repeaters.
Multilayer silicene, the silicon analogue of multilayer graphene, grown on silver (111) surfaces, possesses a honeycomb (ͱ3 Â ͱ3)R30 reconstruction, observed by scanning tunnelling microscopy at room temperature, past the initial formation of the dominant, 3Â3 reconstructed, silicene monolayer. For a few layers silicene film we measure by synchrotron radiation photoelectron spectroscopy, a cone-like dispersion at the Brillouin zone centre due to band folding. p* and p states meet at $0.25 eV below the Fermi level, providing clear evidence of the presence of gapless Dirac fermions. V
We review recent results on the simulation of quantum channels, the reduction of adaptive protocols (teleportation stretching), and the derivation of converse bounds for quantum and private communication, as established in PLOB [Pirandola, Laurenza, Ottaviani, Banchi, arXiv:1510.08863]. We start by introducing a general weak converse bound for private communication based on the relative entropy of entanglement. We discuss how combining this bound with channel simulation and teleportation stretching, PLOB established the two-way quantum and private capacities of several fundamental channels, including the bosonic lossy channel. We then provide a rigorous proof of the strong converse property of these bounds by adopting a correct use of the Braunstein-Kimble teleportation protocol for the simulation of bosonic Gaussian channels. This analysis provides a full justification of claims presented in the follow-up paper WTB [Wilde, Tomamichel, Berta, arXiv:1602.08898] whose upper bounds for Gaussian channels would be otherwise infinitely large. Besides clarifying contributions in the area of channel simulation and protocol reduction, we also present some generalizations of the tools to other entanglement measures and novel results on the maximum excess noise which is tolerable in quantum key distribution.
We present here an all-optical scheme for the experimental realization of a quantum phase gate. It is based on the polarization degree of freedom of two traveling single-photon wave packets and exploits giant Kerr nonlinearities that can be attained in coherently driven ultracold atomic media.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.