Yu and Richardson et al. find that restriction of dietary isoleucine or valine promotes metabolic health in mice and that restriction of dietary isoleucine is required for the metabolic benefits of a low-protein diet. Furthermore, higher dietary isoleucine levels are associated with increased BMI in humans.
Faced with reduced levels of food, animals must adjust to the consequences of the shortfall in energy. We explored how C57BL/6 mice withdrew energy from different body tissues during three months of food restriction at graded levels up to 40% (calorie restriction: CR). We compared this to the response to equivalent levels of protein restriction (PR) without a shortfall in calories. Under CR there was a dynamic change in body mass over 30 days and thereafter it stabilized. The time to reach stability was independent of the level of restriction. At the end of three months whole body dissections revealed differential utilization of the different tissues. Adipose tissue depots were the most significantly utilized tissue, and provided 55.8 to 60.9% of the total released energy. In comparison, reductions in the sizes of structural tissues contributed between 29.8 and 38.7% of the energy. The balance was made up by relatively small changes in the vital organs. The components of the alimentary tract grew slightly under restriction, particularly the stomach, and this was associated with a parallel increase in assimilation efficiency of the food (averaging 1.73%). None of the changes under CR were recapitulated by equivalent levels of PR.
Limiting food intake attenuates many of the deleterious effects of aging, impacting upon healthspan and leading to an increased lifespan. Whether it is the overall restriction of calories (calorie restriction: CR) or the incidental reduction in macronutrients such as protein (protein restriction: PR) that mediate these effects is unclear. The impact of 3 month CR or PR, (10 to 40%), on C57BL/6 mice was compared to controls fed ad libitum. Reductions in circulating leptin, tumor necrosis factor-α and insulin-like growth factor-1 (IGF-1) were relative to the level of CR and individually associated with morphological changes but remained unchanged following PR. Glucose tolerance and insulin sensitivity were improved following CR but not affected by PR. There was no indication that CR had an effect on oxidative damage, however CR lowered antioxidant activity. No biomarkers of oxidative stress were altered by PR. CR significantly reduced levels of major urinary proteins suggesting lowered investment in reproduction. Results here support the idea that reduced adipokine levels, improved insulin/IGF-1 signaling and reduced reproductive investment play important roles in the beneficial effects of CR while, in the short-term, attenuation of oxidative damage is not applicable. None of the positive effects were replicated with PR.
A commonly observed response in mammals to calorie restriction (CR) is reduced body temperature (Tb). We explored how the Tb of male C57BL/6 mice responded to graded CR (10 to 40%), compared to the response to equivalent levels of protein restriction (PR) over 3 months. Under CR there was a dynamic change in daily Tb over the first 30–35 days, which stabilized thereafter until day 70 after which a further decline was noted. The time to reach stability was dependent on restriction level. Body mass negatively correlated with Tb under ad libitum feeding and positively correlated under CR. The average Tb over the last 20 days was significantly related to the levels of body fat, structural tissue, leptin and insulin-like growth factor-1. Some mice, particularly those under higher levels of CR, showed periods of daily torpor later in the restriction period. None of the changes in Tb under CR were recapitulated by equivalent levels of PR. We conclude that changes in Tb under CR are a response only to the shortfall in calorie intake. The linear relationship between average Tb and the level of restriction supports the idea that Tb changes are an integral aspect of the lifespan effect.
Although the beneficial effects of calorie restriction (CR) on health and aging were first observed a century ago, the specific macronutrients and molecular processes that mediate the effect of CR have been heavily debated. Recently, it has become clear that dietary protein plays a key role in regulating both metabolic health and longevity, and that both the quantity and quality - the specific amino acid composition - of dietary protein mediates metabolic health. Here, we discuss recent findings in model organisms ranging from yeast to mice and humans regarding the influence of dietary protein as well as specific amino acids on metabolic health, and the physiological and molecular mechanisms which may mediate these effects. We then discuss recent findings which suggest that the restriction of specific dietary amino acids may be a potent therapy to treat or prevent metabolic syndrome. Finally, we discuss the potential for dietary restriction of specific amino acids - or pharmaceuticals which harness these same mechanisms - to promote healthy aging.
SummaryCalorie restriction (CR) remains the most robust intervention to extend lifespan and improve health span. Using a global mass spectrometry‐based metabolomic approach, we identified 193 metabolites that were significantly differentially expressed (SDE) in the livers of C57BL/6 mice, fed graded levels of CR (10, 20, 30 and 40% CR) compared to mice fed ad libitum for 12 h a day. The differential expression of metabolites also varied with the different feeding groups. Pathway analysis revealed that graded CR had an impact on carnitine synthesis and the carnitine shuttle pathway, sphingosine‐1‐phosphate (S1P) signalling and methionine metabolism. S1P, sphingomyelin and L‐carnitine were negatively correlated with body mass, leptin, insulin‐like growth factor‐ 1 (IGF‐1) and major urinary proteins (MUPs). In addition, metabolites which showed a graded effect, such as ceramide, S1P, taurocholic acid and L‐carnitine, responded in the opposite direction to previously observed age‐related changes. We suggest that the modulation of this set of metabolites may improve liver processes involved in energy release from fatty acids. S1P also negatively correlated with catalase activity and body temperature, and positively correlated with food anticipatory activity. Injecting mice with S1P or an S1P receptor 1 agonist did not precipitate changes in body temperature, physical activity or food intake suggesting that these correlations were not causal relationships.
Food intake and circadian rhythms are regulated by hypothalamic neuropeptides and circulating hormones, which could mediate the anti‐ageing effect of calorie restriction (CR). We tested whether these two signaling pathways mediate CR by quantifying hypothalamic transcripts of male C57BL/6 mice exposed to graded levels of CR (10 % to 40 %) for 3 months. We found that the graded CR manipulation resulted in upregulation of core circadian rhythm genes, which correlated negatively with circulating levels of leptin, insulin‐like growth factor 1 (IGF‐1), insulin, and tumor necrosis factor alpha (TNF‐α). In addition, key components in the hunger signaling pathway were expressed in a manner reflecting elevated hunger at greater levels of restriction, and which also correlated negatively with circulating levels of insulin, TNF‐α, leptin and IGF‐1. Lastly, phenotypes, such as food anticipatory activity and body temperature, were associated with expression levels of both hunger genes and core clock genes. Our results suggest modulation of the hunger and circadian signaling pathways in response to altered levels of circulating hormones, that are themselves downstream of morphological changes resulting from CR treatment, may be important elements in the response to CR, driving some of the key phenotypic outcomes.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.