We examine the distribution of on-sky relative velocities for wide binaries previously assembled from GAIA DR2 data and focus on the origin of the high velocity tail of apparently unbound systems which may be interpreted as evidence for non-Newtonian gravity in the weak field limit. We argue that this tail is instead explicable in terms of a population of hidden triples, i.e. cases where one of the components of the wide binary is itself a close binary unresolved in the GAIA data. In this case the motion of the photocentre of the inner pair relative to its barycentre affects the apparent relative proper motion of the wide pair and can make pairs that are in fact bound appear to be unbound. We show that the general shape of the observed distributions can be reproduced using simple observationally motivated assumptions about the population of hidden triples.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.