Hydrogels are materials with advantages in specific applications, such as, retention of food active compounds. This work aims to develop starch (S)/carboxymethyl cellulose (CMC) hydrogels with porous structure, using reactive extrusion to promote crosslinking with sodium trimetaphosphate (STMP). The expansion, porosity, degree of substitution, gel fraction, swelling properties, and FTIR are studied, comparing S, S/CMC, S/STMP, and S/CMC/STMP formulations. Samples containing STMP present the same degree of substitution (0.050 ± 0.001). Higher porosity and percentage of open pores are observed in the mixed hydrogel (S/CMC/STMP). Crosslinking increase the swelling capacity at pH 7, and this property, just like the gel fraction, are sensitive to pH variations. The hydrogel S/CMC present the highest swelling rate compared with the other samples, suggesting strong interaction between components. The reactive extrusion process is efficient to produce starch and starch/CMC hydrogels crosslinked with STMP and the overall results demonstrate the advantages of the mixed hydrogel.
This work aims to develop hydrogel films of starch and carboxymethyl cellulose (CMC) crosslinked with sodium trimetaphosphate (STMP) and to characterize some of their properties. Starch and STMP (S/T), starch and CMC (S/C), and mixed (S/T/C) films were prepared by casting. The degree of substitution, morphology, swelling degree, FTIR, mechanical properties, and sorption isotherms were studied. Reticulated samples (S/T and S/T/C) showed the same degree of substitution (0.050 ± 0.001). All films presented homogeneous morphology, but the mixed film showed greater roughness. Crosslinking increased the swelling capacity of the mixed hydrogel at pH 7, although it remained decreased concerning the S/T hydrogel. However, this property was sensitive to pH variations. The mixed film (S/T/C) showed greater mechanical resistance. The casting process was efficient to produce hydrogel films of starch/CMC crosslinked with STMP and the general results demonstrated the advantages of the mixed hydrogel.
An ecofriendly and low‐cost film composed by cassava starch, polyvinyl alcohol, and sericin blend (CS–PVA–SS) was synthesized, characterized, and applied as a novel support for Botryosphaeria ribis EC‐01 lipase immobilization by enzyme–film–enzyme adsorption. Film revealed thickness between 230 and 309 μm and higher flexibility and malleability in comparison with film without SS. Based on p‐nitrophenyl palmitate hydrolysis reaction, the activity retention of immobilized lipase was 987%. For optimal conditions, the yield in ethyl oleate was 95% for immobilized enzyme. Maximum yield was obtained at 49°C, molar ratio oleic acid:ethanol of 1:3, 1.25 g lipase film or 50 U (1.03 ± 0.03 mg protein) and 30 h. Even after seven cycles of use, immobilized lipase showed 52% reduction in ester yield. Biodegradable and biorenewable film is a promising material as a support to immobilize lipases and application in biocatalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.