Scientific collaboration networks are a hallmark of contemporary academic research. Researchers are no longer independent players, but members of teams that bring together complementary skills and multidisciplinary approaches around common goals. Social network analysis and co-authorship networks are increasingly used as powerful tools to assess collaboration trends and to identify leading scientists and organizations. The analysis reveals the social structure of the networks by identifying actors and their connections. This article reviews the method and potential applications of co-authorship network analysis in health. The basic steps for conducting co-authorship studies in health research are described and common network metrics are presented. The application of the method is exemplified by an overview of the global research network for Chikungunya virus vaccines.
The nuclear factor of activated T cells (NFAT) family of transcription factors has been primarily identified in immune cells; however, these proteins have been recently found to be functionally active in several other non-immune cell types. NFAT proteins are activated upon different stimuli that lead to increased intracellular calcium levels. Regardless of their widely known cytokine gene expression properties, NFATs have been shown to regulate other genes related to cell cycle progression, cell differentiation and apoptosis, revealing a broader role for these proteins in normal cell physiology. Several reports have addressed the participation of NFATs in many aspects of malignant cell transformation and tumorigenic processes. In this review, we will discuss the involvement of the different NFAT family members in the regulation of cell cycling, differentiation and tumor formation, and also its implications on oncogenesis. Better understanding the mechanisms by which NFATs regulate cell cycle and tumor-related events should be relevant for the development of rational anti-cancer therapies.
Allergic diseases have been closely related to Th2 immune responses, which are characterized by high levels of interleukin (IL)
Haematological and cytokine alterations in malaria are a broad and controversial subject in the literature. However, few studies have simultaneously evaluated various cytokines in a single patient group during the acute and convalescent phases of infection. The aim of this study was to sequentially characterise alterations in haematological patters and circulating plasma cytokine and chemokine levels in patients infected with Plasmodium vivax or Plasmodium falciparum from a Brazilian endemic area during the acute and convalescent phases of infection. During the acute phase, thrombocytopaenia, eosinopaenia, lymphopaenia and an increased number of band cells were observed in the majority of the patients. During the convalescent phase, the haematologic parameters returned to normal. During the acute phase, P. vivax and P. falciparum patients had significantly higher interleukin (IL)-6, IL-8, IL-17, interferon-γ, tumour necrosis factor (TNF)-α, macrophage inflammatory protein-1β and granulocyte-colony stimulating factor levels than controls and maintained high levels during the convalescent phase. IL-10 was detected at high concentrations during the acute phase, but returned to normal levels during the convalescent phase. Plasma IL-10 concentration was positively correlated with parasitaemia in P. vivax and P. falciparum-infected patients. The same was true for the TNF-α concentration in P. falciparum-infected patients. Finally, the haematological and cytokine profiles were similar between uncomplicated P. falciparum and P. vivax infections.
CD8+ T lymphocytes are excellent sources of IFN-γ; however, the molecular mechanisms that dictate IFN-γ expression upon TCR stimulation in these cells are not completely understood. In this study, we evaluated the involvement of NFAT1 in the regulation of IFN-γ gene expression in murine CD8+ T cells and its relevance during Th differentiation. We show that CD8+, but not CD4+, T cells, represent the very first source of IFN-γ upon primary T cell activation, and also that the IFN-γ produced by naive CD8+ T cells may enhance CD4+ Th1 differentiation in vitro. TCR stimulation rapidly induced IFN-γ expression in CD8+ T lymphocytes in a cyclosporin A-sensitive manner. Evaluation of CD8+ T cells showed that calcium influx alone was sufficient to activate NFAT1 protein, transactivate IFN-γ gene promoter, and induce IFN-γ production. In fact, NFAT1-deficient mice demonstrated highly impaired IFN-γ production by naive CD8+ T lymphocytes, which were totally rescued after retroviral transduction with NFAT1-encoding vectors. Moreover, NFAT1-dependent IFN-γ production by the CD8+ T cell compartment was crucial to control a Th2-related response in vivo, such as allergic inflammation. Consistently, CD8α- as well as IFN-γ-deficient mice did not mount a Th1 immune response and also developed in vivo allergic inflammation. Our results clearly indicate that IFN-γ production by CD8+ T cells is dependent of NFAT1 transcription factor and may be an essential regulator of Th immune responses in vivo.
Macrophage migration inhibitory factor (MIF) is increased in asthmatic patients and plays a critical role in the pathogenesis of asthma. We show here that mice lacking MIF failed to develop airway hyper-responsiveness (AHR), tissue eosinophilia, and mucus metaplasia. Analysis of the bronchoalveolar fluids revealed a substantial reduction of IL-13, eotaxin and cysteinyl-leukotrienes. The lack of these cardinal features of asthma in MIF -/-mice occurs regardless of high concentrations of IL-4 in the lung and OVAspecific IgE in the serum. Antigen-specific lymphocyte proliferation and IL-13 production were similarly increased in the draining lymph nodes of OVA-immunized and challenged MIF -/-mice compared to WT, but were reduced in the spleen of MIF -/-, thus indicating differential roles of MIF in these compartments. Stimulation of naive CD4 + cells with anti-CD3 antibody demonstrated that MIF -/-cells produced increased amounts of IFN-c and IL-4 compared to WT CD4 + cells. Finally, treatment of sensitized BALB/c mice with neutralizing anti-MIF antibody abrogated the development of ARH and airway inflammation without affecting the production of Th2 cytokines or IgE. The present study demonstrates that MIF is required for allergic inflammation, adding important elements to our knowledge of asthma pathogenesis and suggesting that neutralization of MIF might be of therapeutic value in asthma. IntroductionAllergic asthma is a disorder characterized by chronic lung inflammation, reversible airway obstruction and increases in airway hyper-responsiveness (AHR) to nonspecific stimuli. Several studies have provided compelling evidences that the lung infiltrating leukocytes and the proinflammatory mediators they produce initiate cellular damage, amplify the immune response, cause airway physiological changes and tissue remodeling [1]. The airway inflammation of asthma has a predominance of Th2 CD4 + lymphocytes, eosinophils and mast cells infiltrating the lung interstitium. Several studies indicate the existence of a mechanism dependent on IL-5 and eosinophils that induce pulmonary damage and intensify AHR [3][4][5]. In other studies, however, the induction of AHR was observed despite the absence of infiltrating eosinophils, suggesting dissociation between these phenomena [6][7][8][9][10]. Macrophage migration inhibitory factor (MIF) is a pleiotropic molecule and critical mediator of innate and acquired immune responses [11,12]. Pre-formed MIF protein is present in many cell types and is released in response to different stimuli, such as infection and cytokine stimulation [12]. MIF exhibits several proinflammatory functions, including the induction of TNF-a, IL-1 and NO release from macrophages, and the production of arachidonic acid and eicosanoids through the induction of phospholipase A 2 and cyclooxygenase [13,14]. A unique property of MIF is its secretion by immune cells in response to physiological increase in glucocorticoid levels. Once released, MIF can counterregulate the anti-inflammatory effects of steroids on cyt...
Inhalation of JMF2-1 prevents the cardinal features of asthma by reducing T(H) 2 cytokine generation and lung eosinophilic inflammatory infiltrates via local inhibition of T cell function and survival. JMF2-1 may represent a novel therapeutic alternative for asthma control with distinct advantages over local anaesthetics.
In Brazil, malaria is prevalent in the Amazon region and these regions coincide with high prevalence of intestinal parasites but few studies explore the interaction between malaria and other parasites. Therefore, the present study evaluates changes in cytokine, chemokine, C-reactive protein, and nitric oxide (NO) concentrations in 264 individuals, comparing plasma from infected individuals with concurrent malaria and intestinal parasites to individuals with either malaria infection alone and uninfected. In the studied population 24% of the individuals were infected with Plasmodium and 18% coinfected with intestinal parasites. Protozoan parasites comprised the bulk of the intestinal parasites infections and subjects infected with intestinal parasites were more likely to have malaria. The use of principal component analysis and cluster analysis associated increased levels of IL-6, TNF-α, IL-10, and CRP and low levels of IL-17A predominantly with individuals with malaria alone and coinfected individuals. In contrast, low levels of almost all inflammatory mediators were associated predominantly with individuals uninfected while increased levels of IL-17A were associated predominantly with individuals with intestinal parasites only. In conclusion, our data suggest that, in our population, the infection with intestinal parasites (mainly protozoan) does not modify the pattern of cytokine production in individuals infected with P. falciparum and P. vivax.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers