In order to obtain greater accuracy in simulation, more sophisticated models are often required. When it comes to the torsional vibration of reciprocating mechanisms the effect of inertia variation is very important. It has been shown that the inclusion of this variation increases model accuracy for both single-cylinder and multi-cylinder engine torsional vibration predictions. Recent work by the present authors has revealed that piston-to-cylinder friction may modify an engine's ‘apparent’ inertia function. Kinematic analysis also shows that the piston side force and the dynamic piston-to-cylinder friction are interdependent. This has implications for engine vibration modelling. Most modern engines employ a gudgeon pin offset, and there is a growing interest in pursuing large crank offsets; hence, the effect of these on inertia variation is also of interest. This paper presents the derivation of the inertia function for a single engine mechanism, including both piston-to-cylinder friction and crank or gudgeon pin offset, and investigates the effect of each through predictions. The effect of crank offset on the variable inertia function is also verified by experiment.
When developing vibration models, so as to reduce model complexity, it is typically expected that good prediction accuracy can be achieved by ignoring the complication of friction. In this paper, the significance of friction between the piston and cylinder on engine block dynamics is shown through simulation in both the time and frequency domains. Simulations and experiments indicate that large differences exist between model predictions for the engine block moment if this friction is not accounted for. This is especially true at low crankshaft rotational speeds when dynamic inertia effects are small. Experiments on a motored single cylinder engine at different average rotational speeds confirm the theory and very good tie-up with predictions is obtained. It is expected that these findings will also have implications for the torsional vibration of the engine.
The transfer of high-precision optical frequency signals over free-space links, particularly between ground stations and satellites, will enable advances in fields ranging from coherent optical communications and satellite Doppler ranging to tests of General Relativity and fundamental physics. We present results for the actively stabilized coherent phase transfer of a 193 THz continuous wave optical frequency signal over horizontal free-space links 150 m and 600 m in length. Over the 600 m link we achieved a fractional frequency stability of 8.9×10 −18 at one second of integration time, improving to 1.3×10 −18 at an integration time of 64 s, suitable for transmission of optical atomic clock signals. The achievable transfer distance is limited by deep-fading of the transmitted signal due to atmospheric turbulence. We also estimate the expected additional degradation in stability performance for frequency transfer to Low Earth Orbit.
Centreless grinding is widely used as a production process for removing initial roundness errors from workpieces. The process can be prone to vibration and the causes of this have been investigated and reported in many publications. This paper describes a model of centreless grinding that includes the machine dynamics, regeneration on both the workpiece and grinding wheel and allows unstable vibration to be investigated. It further allows the division between geometric instability and chatter to be shown to be unnecessary and artificial. A frequency domain model is developed that allows growth and decay rates to be determined. The main aim was to examine possible solutions for unstable vibration in centreless grinding. As flexible grinding wheels have been used to prevent chatter in other grinding processes, their use for centreless grinding was investigated and is shown to be ineffective.
It has been known for some time that the torsional vibration of reciprocating engines and pumps cannot be modelled accurately by representing the reciprocating mechanism by a constant inertia. There have been many publications describing better models than those that use constant inertia and these indicate that the effective inertia of a reciprocating mechanism varies with angular position. The major component of this variation is a twice per revolution cyclic effect—hence the term ‘secondary inertia’. The consequences of this secondary inertia effect can be serious for torsional vibration causing ‘secondary resonance,’ and even instability. This paper contains a review of the current literature on the subject and introduces some recent work by the authors.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.