The search for ferromagnetism above room temperature in dilute magnetic semiconductors has been intense in recent years. We report the first observations of ferromagnetism above room temperature for dilute (<4 at.%) Mn-doped ZnO. The Mn is found to carry an average magnetic moment of 0.16 mu(B) per ion. Our ab initio calculations find a valance state of Mn(2+) and that the magnetic moments are ordered ferromagnetically, consistent with the experimental findings. We have obtained room-temperature ferromagnetic ordering in bulk pellets, in transparent films 2-3 microm thick, and in the powder form of the same material. The unique feature of our sample preparation was the low-temperature processing. When standard high-temperature (T > 700 degrees C) methods were used, samples were found to exhibit clustering and were not ferromagnetic at room temperature. This capability to fabricate ferromagnetic Mn-doped ZnO semiconductors promises new spintronic devices as well as magneto-optic components.
The microscopic mechanism behind the extraordinary ability of ceria to store, release, and transport oxygen is explained on the basis of first-principles quantum mechanical simulations. The oxygen-vacancy formation energy in ceria is calculated for different local environments. The reversible CeO2-Ce2O3 reduction transition associated with oxygen-vacancy formation and migration is shown to be directly coupled with the quantum process of electron localization.
Oxides with the cubic fluorite structure, e.g., ceria (CeO2), are known to be good solid electrolytes when they are doped with cations of lower valence than the host cations. The high ionic conductivity of doped ceria makes it an attractive electrolyte for solid oxide fuel cells, whose prospects as an environmentally friendly power source are very promising. In these electrolytes, the current is carried by oxygen ions that are transported by oxygen vacancies, present to compensate for the lower charge of the dopant cations. Ionic conductivity in ceria is closely related to oxygen-vacancy formation and migration properties. A clear physical picture of the connection between the choice of a dopant and the improvement of ionic conductivity in ceria is still lacking. Here we present a quantum-mechanical first-principles study of the influence of different trivalent impurities on these properties. Our results reveal a remarkable correspondence between vacancy properties at the atomic level and the macroscopic ionic conductivity. The key parameters comprise migration barriers for bulk diffusion and vacancy-dopant interactions, represented by association (binding) energies of vacancy-dopant clusters. The interactions can be divided into repulsive elastic and attractive electronic parts. In the optimal electrolyte, these parts should balance. This finding offers a simple and clear way to narrow the search for superior dopants and combinations of dopants. The ideal dopant should have an effective atomic number between 61 (Pm) and 62 (Sm), and we elaborate that combinations of Nd͞Sm and Pr͞Gd show enhanced ionic conductivity, as compared with that for each element separately. density functional theory ͉ diffusion ͉ point defects ͉ solid oxide fuel cells ͉ CeO 2 M aterials providing high conductivity of oxygen ions are urged by a number of important technological applications, such as oxygen sensors and solid oxide fuel cells (1). The latter are expected to become high-efficiency electrical power generators that enable clean energy production and support sustainable development (2-4). A standard electrolyte for solid oxide fuel cell applications is yttria-stabilized zirconia (YSZ) (1, 5). To increase the ionic conductivity of YSZ to a technologically useful level, high operating temperatures (Ϸ1,000°C) are required. Lowering of the operating temperatures would considerably increase the applicability and competitiveness of solid oxide fuel cells. The ionic conductivity ( ) can be expressed as an exponential function of the activation energy for oxygen vacancy diffusion (E a ),where T stands for temperature, k B for the Boltzman constant, and 0 for a temperature-independent prefactor. Materials with lower E a will facilitate ionic conductivity at lower temperatures, and here rare-earth doped ceria is one of the main candidates (1, 4). The basic principle for the choice of a dopant, advocated by many researchers, is the ability of the dopant to minimize the internal strain of the lattice (6-8). Clear understanding of the phys...
We have investigated the melting of hcp Fe at high pressure by employing molecular dynamics simulations in conjunction with the full potential linear muffin tin orbital method. Apart from being of fundamental value, the melting of iron at high pressure is also important for our understanding of the Earth. The subject of iron melting at high pressures is controversial. The experimental data for the iron melting temperature can be separated into two regions, "low" and "high." Here we present an ab initio simulated iron melting curve which is in agreement with the low temperatures at lower pressures, but is in excellent agreement with the high-mostly shockwave-temperatures at high pressures. A comparison with available data lends support to the presented iron melting curve.
Within the framework of the exact muffin-tin orbitals (EMTO) theory we have developed a new method to calculate the total energy for random substitutional alloys. The problem of disorder is treated within the coherent potential approximation (CPA), and the total energy is obtained using the full charge density (FCD) technique. The FCD-EMTO-CPA method is suitable for determination of energy changes due to anisotropic lattice distortions in random alloys. In particular, we calculate the elastic constants of the Cu-rich face centered cubic Cu-Zn alloys ( alpha-brass) and optimize the c/a ratio for the hexagonal Zn-rich alloys for both the epsilon and eta phases.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.