Aripiprazole is a wide-used antipsychotic drug with therapeutic effects on both positive and negative symptoms of schizophrenia, and reduced side-effects. Although aripiprazole was developed as a dopamine D2 receptor (D2R) partial agonist, all other D2R partial agonists that aimed to mimic aripiprazole failed to exert therapeutic effects in clinic. The present in vivo study aimed to investigate the effects of aripiprazole on the D2R downstream cAMP-PKA and Akt-GSK3β signalling pathways in comparison with a D2R antagonist – haloperidol and a D2R partial agonist – bifeprunox. Rats were injected once with aripiprazole (0.75mg/kg, i.p.), bifeprunox (0.8mg/kg, i.p.), haloperidol (0.1mg/kg, i.p.) or vehicle. Five brain regions – the prefrontal cortex (PFC), nucleus accumbens (NAc), caudate putamen (CPu), ventral tegmental area (VTA) and substantia nigra (SN) were collected. The protein levels of PKA, Akt and GSK3β were measured by Western Blotting; the cAMP levels were examined by ELISA tests. The results showed that aripiprazole presented similar acute effects on PKA expression to haloperidol, but not bifeprunox, in the CPU and VTA. Additionally, aripiprazole was able to increase the phosphorylation of GSK3β in the PFC, NAc, CPu and SN, respectively, which cannot be achieved by bifeprunox and haloperidol. These results suggested that acute treatment of aripiprazole had differential effects on the cAMP-PKA and Akt-GSK3β signalling pathways from haloperidol and bifeprunox in these brain areas. This study further indicated that, by comparison with bifeprunox, the unique pharmacological profile of aripiprazole may be attributed to the relatively lower intrinsic activity at D2R.
Aripiprazole is a D2-like receptor (D2R) partial agonist with a favourable clinical profile. Previous investigations indicated that acute and short-term administration of aripiprazole had effects on PKA activity, GSK3β-dependent pathways, GABAA receptors, NMDA receptor and CREB1 in the brain. Since antipsychotics are used chronically in clinics, the present study investigated the long-term effects of chronic oral aripiprazole treatment on these cellular signalling pathways, in comparison with haloperidol (a D2R antagonist) and bifeprunox (a potent D2R partial agonist). We found that the Akt-GSK3β pathway was activated by aripiprazole and bifeprunox in the prefrontal cortex; NMDA NR2A levels were reduced by aripiprazole and haloperidol. In the nucleus accumbens, all three drugs increased Akt-GSK3β signalling; in addition, both aripiprazole and haloperidol, but not bifeprunox, increased the expression of Dvl-3, β-catenin and GABAA receptors, NMDA receptor subunits, as well as CREB1 phosphorylation levels. The results suggest that chronic oral administration of aripiprazole affects schizophrenia-related cellular signalling pathways and markers (including Akt-GSK3β signalling, Dvl-GSK3β-β-catenin signalling, GABAA receptor, NMDA receptor and CREB1) in a brain-region-dependent manner; the selective effects of aripiprazole on these signalling pathways might be associated with its unique clinical effects.
This study revealed that aripiprazole, olanzapine and risperidone affected 5-HT2AR, 5-HT2CR, 5-HTT, D1R and D2R bindings differently in the brains of juvenile male and female rats.
The GABAA receptor is implicated in the pathophysiology of schizophrenia and regulated by PKA signalling. Current antipsychotics bind with D2-like receptors, but not the GABAA receptor. The cAMP-responsive element-binding protein 1 (CREB1) is also associated with PKA signalling and may be related to the positive symptoms of schizophrenia. This study investigated the effects of antipsychotics in modulating D2-mediated PKA signalling and its downstream GABAA receptors and CREB1. Rats were treated orally with aripiprazole (0.75 mg/kg, ter in die (t.i.d.)), bifeprunox (0.8 mg/kg, t.i.d.), haloperidol (0.1 mg/kg, t.i.d.) or vehicle for 1 week. The levels of PKA-Cα and p-PKA in the prefrontal cortex (PFC), nucleus accumbens (NAc) and caudate putamen (CPu) were detected by Western blots. The mRNA levels of Gabrb1, Gabrb2, Gabrb3 and Creb1, and their protein expression were measured by qRT-PCR and Western blots, respectively. Aripiprazole elevated the levels of p-PKA and the ratio of p-PKA/PKA in the NAc, but not the PFC and CPu. Correlated with this elevated PKA signalling, aripiprazole elevated the mRNA and protein expression of the GABAA (β-1) receptor and CREB1 in the NAc. While haloperidol elevated the levels of p-PKA and the ratio of p-PKA/PKA in both NAc and CPu, it only tended to increase the expression of the GABAA (β-1) receptor and CREB1 in the NAc, but not the CPu. Bifeprunox had no effects on PKA signalling in these brain regions. These results suggest that aripiprazole has selective effects on upregulating the GABAA (β-1) receptor and CREB1 in the NAc, probably via activating PKA signalling.
BackgroundSecond generation antipsychotics (SGAs) induce glucometabolic side-effects, such as hyperglycemia and insulin resistance, which pose a therapeutic challenge for mental illness. Sphingolipids play a role in glycaemic balance and insulin resistance. Endoplasmic reticulum (ER) stress contributes to impaired insulin signalling and whole-body glucose intolerance. Diabetogenic SGA effects on ER stress and sphingolipids, such as ceramide and sphingomyelin, in peripheral metabolic tissues are unknown. This study aimed to investigate the acute effects of clozapine and olanzapine on ceramide and sphingomyelin levels, and protein expression of key enzymes involved in lipid and glucose metabolism, in the liver and skeletal muscle.MethodsFemale rats were administered olanzapine (1 mg/kg), clozapine (12 mg/kg), or vehicle (control) and euthanized 1-h later. Ceramide and sphingomyelin levels were examined using electrospray ionization (ESI) mass spectrometry. Expression of lipid enzymes (ceramide synthase 2 (CerS2), elongation of very long-chain fatty acid 1 (ELOVL1), fatty acid synthase (FAS) and acetyl CoA carboxylase 1 (ACC1)), ER stress markers (inositol-requiring enzyme 1 (IRE1) and eukaryotic initiation factor (eIF2α) were also examined.ResultsClozapine caused robust reductions in hepatic ceramide and sphingolipid levels (p < 0.0001), upregulated CerS2 (p < 0.05) and ELOVL1 (+ 37%) and induced significant hyperglycemia (vs controls). In contrast, olanzapine increased hepatic sphingomyelin levels (p < 0.05 vs controls). SGAs did not alter sphingolipid levels in the muscle. Clozapine increased (+ 52.5%) hepatic eIF2α phosphorylation, demonstrating evidence of activation of the PERK/eIF2α ER stress axis. Hepatic IRE1, FAS and ACC1 were unaltered.ConclusionsThis study provides the first evidence that diabetogenic SGAs disrupt hepatic sphingolipid homeostasis within 1-h of administration. Sphingolipids may be key candidates in the mechanisms underlying the diabetes side-effects of SGAs; however, further research is required.
Evidence from genetic, transgenic and post-mortem studies has strongly supported the critical role that neuregulin 1 (NRG1) and its ErbB4 receptor plays in the pathophysiology of schizophrenia. This article aims to review current evidence regarding the effects of antipsychotic treatment on NRG1-ErbB4 signalling. NRG1 and ErbB4 knockout mice display abnormal behaviours relevant to certain features of schizophrenia, which could be improved by antipsychotic (clozapine/haloperidol) treatment. In contrast to most NRG1/ ErbB4 knockout mice with a decreased NRG1-ErbB4 signalling, the majority post-mortem studies showed an increased NRG1-ErbB4 signalling in schizophrenic patients. These differences could be due to degrees of alteration in risk genes (subtle variations in patients vs pronounced alteration in mutant mice) or the duration of the modification on NRG1 signalling. Various antipsychotics have different effects on NRG1 and ErbB4 expression and signalling that are dependent on treatment duration. Current evidence suggests that a chronic (12 weeks) antipsychotic treatment, at least in animal models, could downregulate NRG1-ErbB4 signalling, although an upregulation is seen for a short-term treatment. These effects may be due to multiple binding profiles with various G-coupled protein receptors (e.g. dopamine, and serotonin receptors) of antipsychotics. Studies are needed to investigate the interactions between NRG1-ErbB4 and the other signalling pathways (such as glutamatergic, GABAergic and dopaminergic). Furthermore, the interactions between NRG1/ErbB4 and other schizophrenia suspensibility genes under antipsychotic treatment also require investigation. and ErbB4 knockout mice display some schizophrenia-like behavioural abnormalities, which could be improved by antipsychotic (clozapine/haloperidol) treatment. In contrast to NRG1/ErbB4 knockout mice with a decreased NRG1-ErbB4 signalling, the majority post-mortem studies showed an increased NRG1-ErbB4 signalling in schizophrenia patients. These differences could be due to degrees of alteration in risk genes (subtle variations in patients vs pronounced alteration in mutant mice) or the duration of the modification on NRG1 signalling. Various antipsychotics have different effects on NRG1 and ErbB4 expression and signalling dependent on treatment duration. Current evidence suggests that a chronic (12 weeks) antipsychotic treatment, at least in animal models, downregulates NRG1-ErbB4 signalling, although an upregulation is seen for a short term treatment. Therefore, the dysfunctional NRG1-ErbB4 signalling observed in schizophrenia is unlikely to be due to antipsychotic therapy. Furthermore, multiple-receptor binding profiles (e.g. dopamine, and 5-HT receptors) of antipsychotics may also contribute to their different influences on NRG1-ErbB4 signalling. Studies are also needed to investigate the interactions between NRG1-ErbB4 and the other signalling pathways (such as glutamatergic, GABAergic and dopaminergic).
Danshen, the dried root of Salvia miltiorrhiza, one of the most investigated medicinal plants with well-defined phytochemical constituents, has shown prominent clinical outcomes for antioxidant, anti-inflammatory, and anticoagulant activities to attain vascular protection and additional benefits for cancer therapy. More recently, activation of neutrophil and excessive formation of neutrophil extracellular traps (NETs) have been observed in pathological conditions of metastatic cancers; thus, we hypothesized that suppression of NETs could account for an essential cellular event underlying Danshen-mediated reduction of the incidence of metastasis. Using an experimental pulmonary metastases model of red fluorescent protein- (RFP-) labeled gastric cancer cells in combination with macroscopic ex vivo live-imaging system, our data indicated that Danshen impaired the fluorescent intensity and quantity of metastatic nodules. Moreover, Danshen could prevent neutrophil trafficking to the metastatic sites with decreased plasma levels of neutrophil elastase (NE) and procoagulant potential featured by fibrinogen. We further established phorbol 12-myristate 13-acetate- (PMA-) induced NET formation of human neutrophils and screened representative active compounds derived from the hydrophilic and hydrophobic fractions of Danshen using qualitative and quantitative methods. As a result, we found that salvianolic acid B (Sal B) and 15,16-dihydrotanshinone I (DHT I) exhibited superior inhibitory activities on NET formation and significantly attenuated the levels of citrullinated histone H3 (citH3), a biomarker for NET formation. Multitarget biochemical assays demonstrated that Sal B and DHT I distinctly modulated the enzymatic cascade involved in NET formation. Sal B and DHT I could disrupt NET formation at the earlier stage by blocking the activities of myeloperoxidase (MPO) and NADPH oxidase (NOX), respectively. Lastly, combining treatment of Sal B and DHT I under subED50 doses displayed remarkable synergism effect on NET inhibition. Altogether, these data provide insight into how promiscuous compounds from herbal medicine can be effectively targeted NETs towards hematogenous metastasis of certain tumors.
Objective This study was designed to evaluate the clinical efficacy of combined traditional Chinese medicine (TCM) and conventional chemotherapy versus conventional chemotherapy in patients with stage II-IIIA non-small-cell lung cancer (NSCLC) after radical surgery. Methods A retrospective cohort study was conducted in patients with stage II-IIIA NSCLC from Subei People's Hospital and Yangzhou Traditional Chinese Medicine Hospital in Yangzhou City of Jiangsu Province from 2012 to 2016. Patients were divided into two groups: the TCM user group (patients receiving treatment with integrated TCM and conventional chemotherapy) and the non-TCM user group (patients receiving conventional chemotherapy only). The two groups were compared for their median disease-free survival (DFS) and median overall survival (OS). Results A total of 67 patients with stage II-IIIA NSCLC were enrolled between January 2012 and December 2016. The median DFS for the non-TCM user group was 601 days (95% confidence interval [CI], 375.7-826.3). The median DFS for TCM user group could not be calculated. However, log-rank analysis showed that the median survival time in the TCM user group was significantly longer than that of the non-TCM user group (P < 0.05). In addition, several significant risk factors were detected for predicting disease prognosis in patients with NSCLC, such as age, ECOG, lymphatic metastasis, and body mass index (BMI). For patients harboring these independent risk factors, the DFS of TCM user group was much longer than that of non-TCM user group (P < 0.05). Conclusion Adjuvant therapy with TCM may reduce the rate of tumor recurrence and metastasis and prolong DFS of patients with stage II-IIIA NSCLC.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers