A hydrogen reformer furnace is a combustion chamber which is used to supply heat for the catalytic process that converts natural gas into hydrogen. The reforming reaction that happens inside the catalyst tubes is endothermic, requiring high levels of heat input. The combustion process in the hydrogen reformer furnace provides the heat to maintain the chemical reaction inside the catalyst tubes. Temperature control of the catalyst tubes is a fundamental design requirement of the hydrogen reformer furnace, as the temperature should be maintained in the range which could maximize catalyst reactivity while minimizing any damage to the catalyst pipes. As the furnace has two complicated chemical systems, the heat effect inside the tubes has been simplified by estimating the heat flux based on industry operation. Utilizing the multiphase and non-premixed combustion model using CFD (Computational Fluid Dynamic), the temperature and velocity distribution in the hydrogen reformer furnace have been investigated. Results show that parts of the catalyst tubes are overheated causing hot spots which could lead to premature aging of the pipes. Both the location of burners and maldistribution of the hot flue gas have a great impact on this issue.
Computational Fluid Dynamics (CFD) has become a powerful simulation technology used in iron/steelmaking industrial applications for process design and optimization to save energy. In this paper, a Virtual Engineering (VE) application is presented that uses Virtual Reality (VR) to visualize CFD results in a tracked immersive projection system. The interactive Virtual Reality (VR) was specifically adapted for CFD post-processing to better understand CFD results and more efficiently communicate with non-CFD experts. The VE application has been utilized to make an assessment in terms of visualization and optimization for steelmaking furnaces. The immersive system makes it possible to gain a quick, intuitive understanding of the flow characteristics and distributions of pressure, temperature, and species properties in the industrial equipment. By introducing the virtual engineering environment, the value of CFD simulations has been greatly enhanced to allow engineers to gain much needed process insights for the design and optimization of industrial processes.
A comprehensive numerical and experimental study on a 200 MW tangentially fired boiler firing metallurgical gases was conducted. A three-dimensional Computational Fluid Dynamics (CFD) model was developed to simulate the flow characteristics and combustion process inside the boiler. The Eddy Dissipation Concept combustion model was applied to take into account detailed turbulent interactive reacting chemical reactions. Field experiments were also conducted on the original tangentially fired boiler under different operation conditions. Flame profiles videos were captured during experiments. A quick comparison of the experimental flame profile with numerical simulation results shows good agreement. Wall steam tubes overheating problem was observed, and the hot spots were identified based on a wide range of typical operation conditions. The effect of total fuel input and natural gas percentage on the furnace wall temperature were investigated.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.