Displacement of methane (CH4) by injection gas is regarded as an effective way to exploit shale gas and sequestrate carbon dioxide (CO2) simultaneously.
In order to alleviate the environmental crisis and improve energy structure, countries from all over the world have focused on the hot dry rock geothermal resources with great potential and with little pollution. The geothermal heat production from enhanced geothermal system comes with complex multi-field coupling process, and it is of great significance to study the temporal and spatial evolution of geothermal reservoir. In this work, a practical numerical model is established to simulate the heat production process in EGS, and the comparison of thermal-hydraulic (TH), thermal-hydraulic-mechanical (THM) and thermal-hydraulic-mechanical-chemical (THMC) coupling in geothermal reservoir is analyzed. The results show that the stable production stage of the three cases is approximately 5 years; however, compared with TH and THMC coupling, the service-life for THM coupling decreased by 1140 days and 332 days, respectively. The mechanical enhanced effects are offset by the chemical precipitation, and the precipitation from SiO 2 is much larger than the dissolution of calcite.
The rapid growth in energy consumption and environmental pollution have greatly stimulated the exploration and utilization of shale gas. The injection of gases such as CO2, N2, and their mixture is currently regarded as one of the most effective ways to enhance gas recovery from shale reservoirs. In this study, molecular simulations were conducted on a kaolinite–kerogen IID composite shale matrix to explore the displacement characteristics of CH4 using different injection gases, including CO2, N2, and their mixture. The results show that when the injection pressure was lower than 10 MPa, increasing the injection pressure improved the displacement capacity of CH4 by CO2. Correspondingly, an increase of formation temperature also increased the displacement efficiency of CH4, but an increase of pore size slightly increased this displacement efficiency. Moreover, it was found that when the proportion of CO2 and N2 was 1:1, the displacement efficiency of CH4 was the highest, which proved that the simultaneous injection of CO2 and N2 had a synergistic effect on shale gas production. The results of this paper will provide guidance and reference for the displacement exploitation of shale gas by injection gases.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.