A series of dinuclear M(III) (M = Fe or Ga)
catecholate complexes has been prepared using bisbidentate
catecholate
ligands (L). The products contain discrete, dinuclear
M2(L)3
6- anions
featuring pseudo-octahedral coordination
centers. The helical nature of the dinuclear complexes has been
established by CD spectroscopy and X-ray
crystallography. The salt
(N(CH3)4)6Ga2(L
3
)3
(L
3
=
N,N‘-bis(2,3-dihydroxy-4-carbamoylbenzoyl)-1,4-phenylenediamine) has been characterized by X-ray diffraction; crystals are
hexagonal, space group P3̄1c with unit
cell
dimensions a = 14.283(2) Å, c =
42.966(2) Å, V = 7591 Å3, and
Z = 2. Variable-temperature 1H
NMR
experiments demonstrate that the configuration inversion of the
enantiomers of
K6Ga2(L
4
)3
(L
4
=
N,N‘-bis(2,3-dihydroxy-4-(isopropylcarbamoyl)benzoyl)-1,4-phenylenediamine) and
K6Ga2(L
5
)3
(L
5
=
N-(2,3-dihydroxy-4-(isopropylcarbamoyl)benzoyl)-N‘-(2,3-dimethoxy-4-(methylcarbamoyl)benzoyl)-1,4-phenylenediamine)
is facile
in D2O or DMSO-d
6. The
mechanism of inversion has been probed by dynamic NMR spectroscopy,
using the
complex
K6Ga2(L
5
)3
which exists in two isomeric forms in solution, cis- and
trans. The intramolecular inversion
of the dinuclear helicates occurs without
cis−trans isomerization and proceeds by
independent trigonal twisting
of each metal center, affording the heterochiral meso
complex as an intermediate. The free energy of
activation
for the inversion of
K6Ga2(L
4
)3
in D2O at p[D] = 12.1 is
ΔG
⧧
298 = 79(2) kJ
mol-1, with ΔH = 75(2) kJ
mol-1
and ΔS
⧧ = −12(6) J
mol-1 K-1.
Under slightly acidic conditions a proton-assisted pathway becomes
dominant
and the rate of inversion shows a second-order dependence in
[D+]. The heterochiral meso complex of
Ga2(L
4
)6
3-
is shown to be a transient kinetic intermediate in the (Λ,Λ) ↔
(Δ,Δ) inversion process of the helicate complex.
The catechol siderophore analog
K3[Ga(3)3], 4
(H2
3 =
2,3-dihydroxy-N,N‘-diisopropylterephthalamide),
is D
3-symmetric in aqueous solution, and exists
in two enantiomeric forms, Δ-4 and Λ-4.
Variable temperature
NMR experiments demonstrate that the inversion of the enantiomers of
4 in D2O is facile. The rate of inversion
is
independent of pH above pH 8. The mechanism is intramolecular.
From line-shape analysis the free energy of
activation ΔG
⧧
298 =
67.4(9) kJ mol-1 in D2O at
pD 12.1, with ΔH
⧧ = 58.5(6) kJ
mol-1 and ΔS
⧧ =
−0.030(9) kJ
mol-1 K-1.
Below pD 8 the rate of inversion for 4 is pD dependent
and initially first order in [D+].
Potentiometric
titrations reveal that 4 protonates in two one-proton steps
with log K
HML
3
=
4.66(4) and log
K
H
2
ML
3
= 3.99(7). In
DMSO-d
6, formation of a tight contact ion pair
between K+ and
[Ga(3)3]3- ions
increases the free energy barrier to
inversion by ∼7 kJ mol-1. The complex
K3[Ga(9)3],
10 (H2
9 =
2,3-dihydroxy-N-tert-butyl-N‘-benzylterephthalamide),
was prepared to elucidate the mechanism of inversion by dynamic NMR
spectroscopy, using the fact that 10 exists
in two isomeric forms, cis-10 and
trans-10, which are of C
3
and C
1 symmetry in solution. The ratio
cis-10:trans-10
is 0.78(3) at ambient temperature in D2O or
DMSO-d
6. Two processes are distinguishable
on the NMR time scale
in D2O or DMSO-d
6,
cis-
10−trans-
10
isomerization and the inversion of the enantiomers of
trans-10. Both processes
proceed intramolecularly with T
c = 295(1)
K for Λ-trans-10 to
Δ-trans-10 inversion and
T
c = 335(1) K for
cis-10
to trans-10 isomerization in D2O at
pD 9.5. The discrete exchange pattern of the tert-butyl
resonances during inversion
of trans-10 confirms that the reaction proceeds
by a trigonal twist mechanism via a trigonal prismatic
transition
state. The free energy barriers to inversion are
ΔG
⧧
295 = 60 kJ
mol-1 in D2O (pD 9.8) and
ΔG
⧧
327 = 67 kJ
mol-1
in DMSO-d
6.
Metallkomplexe mit hydrophoben Bindungstaschen erfahren wegen ihrer ungewöhnlichen chemischen Reaktivität gegenwärtig ein groûes Interesse. Die meisten dieser Verbindungen sind einkernige Spezies. Sie wurden zur Stabilisierung von reaktiven Intermediaten, [1] für selektive organische Transformationen [2] oder als Katalysatoren für Reaktionen, die vom Reaktionsmedium abhängen, verwendet. [3] Es wurden auch bereits einige Verbindungen entwickelt, um hydrophobe Umgebungen von Substratbindungsstellen in Metalloproteinen nachzubilden. [4] Diese Befunde veranlassten uns, Schema 1. Strukturen der Liganden und schematische Darstellung der Strukturen der entsprechenden Metallkomplexe vom Typ A oder B (X Substratbindungsstelle der Komplexe).Zweikernkomplexe von peralkylierten Amin-Thiophenol-Makrocyclen zu untersuchen, um damit einen hydrophoben Käfig um eine freie Koordinationsstelle erzeugen zu können. Wir beschreiben hier die Synthesen und Strukturen von zweikernigen Ni II -, Co II -und Zn II -Komplexen des permethylierten Makrocyclus (L Me ) 2À (siehe Schema 1) sowie deren bemerkenswerte Eigenschaft, Kohlendioxid zu fixieren und zu transformieren.Es wurde bereits gezeigt, dass sich die Brückenliganden in Zweikernkomplexen des Typs A viel leichter ersetzen lassen, wenn anstelle von (L H ) 2À der permethylierte Ligand (L Me ) 2À eingesetzt wird (Schema 1). [5] So kann der Hydroxo-verbrückte Komplex 3 (Tabelle 1), der den Ausgangspunkt dieser Arbeit darstellt, durch Reaktion der m-Cl-Spezies 2 mit Natriumhydroxid in Methanol in hohen Ausbeuten erhalten werden.
A series of dinickel(II) complexes with the 24-membered macrocyclic hexaazadithiophenol ligand H(2)L(Me) was prepared and examined. The doubly deprotonated form (L(Me))(2-) forms complexes of the type [(L(Me))Ni2II(mu-L')](n+) with a bioctahedral N(3)Ni(II)(mu-SR)(2)(mu-L')Ni(II)N(3) core and an overall calixarene-like structure. The bridging coordination site L' is accessible for a wide range of exogenous coligands. In this study L'=NO(3)(-), NO(2)(-), N(3)(-), N(2)H(4), pyrazolate (pz), pyridazine (pydz), phthalazine (phtz), and benzoate (OBz). Crystallographic studies reveal that each substrate binds in a distinct fashion to the [(L(Me))Ni(2)](2+) portion: NO(2)(-), N(2)H(4), pz, pydz, and phtz form mu(1,2)-bridges, whereas NO(3)(-), N(3)(-), and OBz(-) are mu(1,3)-bridging. These distinctive binding motifs and the fact that some of the coligands adopt unusual conformations is discussed in terms of complementary host-guest interactions and the size and form of the binding pocket of the [(L(Me))Ni(2)](2+) fragment. UV/Vis and electrochemical studies reveal that the solid-state structures are retained in the solution state. The relative stabilities of the complexes indicate that the [(L(Me))Ni(2)](2+) fragment binds anionic coligands preferentially over neutral ones and strong-field ligands over weak-field ligands. Secondary van der Waals interactions also contribute to the stability of the complexes. Intramolecular ferromagnetic exchange interactions are present in the nitrito-, pyridazine-, and the benzoato-bridged complexes where J=+6.7, +3.5, and +5.8 cm(-1) (H=-2 JS(1)S(2), S(1)=S(2)=1) as indicated by magnetic susceptibility data taken from 300 to 2 K. In contrast, the azido bridge in [(L(Me))Ni(2)(mu(1,3)-N(3))](+) results in an antiferromagnetic exchange interaction J=-46.7 cm(-1). An explanation for this difference is qualitatively discussed in terms of bonding differences.
Pyrazolate-based dinucleating ligands with thioether-containing chelate arms have been used for the synthesis of a family of novel tetranuclear nickel(II) complexes [L2Ni4(N3)3(O2CR)](ClO4)2 that incorporate three azido bridges and one carboxylate (R = Me, Ph). Molecular structures have been elucidated by X-ray crystallography in four cases, revealing Ni4 cores with a unique topology in which two of the azido ligands adopt an unusual mu3-1,1,3 bridging mode. The compounds were further characterized by mass spectrometry, IR spectroscopy, and variable-temperature magnetic susceptibility measurements. Magnetic data analyses indicate a combination of significant intramolecular ferromagnetic and antiferromagnetic exchange interactions that give rise to an overall S(T) = 0 ground state. The sign and the magnitude of the individual couplings have been rationalized in the framework of the common magnetostructural correlations for end-to-end and end-on azido linkages, suggesting that these correlations also remain valid for the respective fragments of multiply bridging mu3-1,1,3 azido ligands.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.