Mobile users' data rate and quality of service are limited by the fact that, within the duration of any given call, they experience severe variations in signal attenuation, thereby necessitating the use of some type of diversity. In this two-part paper, we propose a new form of spatial diversity, in which diversity gains are achieved via the cooperation of mobile users. Part I describes the user cooperation strategy, while Part II focuses on implementation issues and performance analysis. Results show that, even though the interuser channel is noisy, cooperation leads not only to an increase in capacity for both users but also to a more robust system, where users' achievable rates are less susceptible to channel variations.
This is the second in a two-part series of papers on a new form of spatial diversity, where diversity gains are achieved through the cooperation of mobile users. Part I described the user cooperation concept and proposed a cooperation strategy for a conventional code-division multiple-access (CDMA) system. Part II investigates the cooperation concept further and considers practical issues related to its implementation. In particular, we investigate the optimal and suboptimal receiver design, and present performance analysis for the conventional CDMA implementation proposed in Part I. We also consider a high-rate CDMA implementation and a cooperation strategy when assumptions about the channel state information at the transmitters are relaxed. We illustrate that, under all scenarios studied, cooperation is beneficial in terms of increasing system throughput and cell coverage, as well as decreasing sensitivity to channel variations.
Abstract-We introduce a new approach for achieving diversity in spread-spectrum communications over fast-fading multipath channels. The RAKE receiver used in existing systems suffers from significant performance degradation due to the rapid channel variations encountered under fast fading. We show that the Doppler spread induced by temporal channel variations in fact provides another means for diversity that can be further exploited to combat fading. We develop the concept of Doppler diversity and propose a framework that exploits joint multipathDoppler diversity in an optimal fashion. Performance analysis shows that even the relatively small Doppler spreads encountered in practice can be leveraged into significant diversity gains via our approach. The framework is applicable in several mobile wireless multiple access systems and can provide substantial performance improvement over existing systems.
The development of microelectrodes capable of safely stimulating and recording neural activity is a critical step in the design of many prosthetic devices, brain-machine interfaces, and therapies for neurologic or nervous-system-mediated disorders. Metal electrodes are inadequate prospects for the miniaturization needed to attain neuronal-scale stimulation and recording because of their poor electrochemical properties, high stiffness, and propensity to fail due to bending fatigue. Here we demonstrate neural recording and stimulation using carbon nanotube (CNT) fiber electrodes. In vitro characterization shows that the tissue contact impedance of CNT fibers is remarkably lower than that of state-of-the-art metal electrodes, making them suitable for recording single-neuron activity without additional surface treatments. In vivo chronic studies in parkinsonian rodents show that CNT fiber microelectrodes stimulate neurons as effectively as metal electrodes with 10 times larger surface area, while eliciting a significantly reduced inflammatory response. The same CNT fiber microelectrodes can record neural activity for weeks, paving the way for the development of novel multifunctional and dynamic neural interfaces with long-term stability.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.