introduced a new type of contraction called F-contraction and proved a fixed point result in complete metric spaces, which in turn generalizes the Banach contraction principle. The aim of this paper is to introduce F-contractions with respect to a self-mapping on a metric space and to obtain common fixed point results. Examples are provided to support results and concepts presented herein. As an application of our results, periodic point results for the F-contractions in metric spaces are proved. MSC: 47H10; 47H07; 54H25
In this paper, we obtain a Suzuki type fixed point theorem for a generalized multivalued mapping on a partial Hausdorff metric space. As a consequence of the presented results, we discuss the existence and uniqueness of the bounded solution of a functional equation arising in dynamic programming
Abstract. Molodtsov introduced soft sets as a mathematical tool to handle uncertainty associated with real world data based problems. In this paper we propose some new concepts which generalize existing comparable notions. We introduce the concept of generalized soft equality ( denoted as −soft equality ) of two soft sets and prove that the so called lower and upper soft equality of two soft sets imply −soft equality but the converse does not hold. Moreover we give tolerance or dependence relation on the collection of soft sets and soft lattice structures. Examples are provided to illustrate the concepts and results obtained herein.
The aim of this paper is to introduce a class of multivalued mappings satisfying a Suzuki type generalized contractive condition in the framework of fuzzy metric spaces and to present fixed point results for such mappings. Some examples are presented to support the results proved herein. As an application, a common fixed point result for a hybrid pair of single and multivalued mappings is obtained. We show the existence and uniqueness of a common bounded solution of functional equations arising in dynamic programming. Our results generalize and extend various results in the existing literature. MSC: 47H10; 47H04; 47H07
The aim of this paper is to introduce Ciric-Suzuki type quasi-contractive multivalued operators and to obtain the existence of fixed points of such mappings in the framework of b-metric spaces. Some examples are presented to support the results proved herein. We establish a characterization of strong b-metric and b-metric spaces completeness. An asymptotic estimate of a Hausdorff distance between the fixed point sets of two Ciric-Suzuki type quasi-contractive multivalued operators is obtained. As an application of our results, existence and uniqueness of multivalued fractals in the framework of b-metric spaces is proved.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.