The ITER Ion Cyclotron Heating and Current Drive system will deliver 20MW of radio frequency power to the plasma in quasi continuous operation during the different phases of the experimental programme. The system also has to perform conditioning of the tokamak first wall at low power between main plasma discharges. This broad range of reqiurements imposes a high flexibility and a high availabiUty. The paper highlights the physics and design reqiurements on the IC system, the main features of its subsystems, the predicted performance, and the current procurement and installation schedide.
A 20 MW/5GHz Lower Hybrid Current Drive (LHCD) system was initially due to be commissioned and used for the second mission of ITER, i.e. the Q=5 steady state target. Though not part of currently planned procurement phase, it is now under consideration for an earlier delivery. In this paper, both physics and technology conceptual designs are reviewed.
n the framework of the ion cyclotron resonance frequency (ICRF) heating development at CEA Cadarache, a prototype antenna based on the load-resilient electrical layout foreseen for ITER has been built. This prototype was recently tested in Tore Supra. The ITER-like electrical scheme has been validated during fast perturbations at the edge plasma. Clear load resilience properties are reported. Main conclusions and consequences to be learned for the development of ITER antenna are discussed.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.