a b s t r a c tThe paper addresses the problem of controlling a Heating Ventilation and Air Conditioning (HVAC) system with the purpose of achieving a desired thermal comfort level and energy savings. The formulation uses the thermal comfort, assessed using the predicted mean vote (PMV) index, as a restriction and minimises the energy spent to comply with it. This results in the maintenance of thermal comfort and on the minimisation of energy, which in most conditions are conflicting goals requiring an optimisation method to find appropriate solutions over time. A discrete model-based predictive control methodology is applied, consisting of three major components: the predictive models, implemented by radial basis function neural networks identified by means of a multi-objective genetic algorithm; the cost function that will be optimised to minimise energy consumption and maintain thermal comfort; and the optimisation method, a discrete branch and bound approach. Each component will be described, with special emphasis on a fast and accurate computation of the PMV indices. Experimental results obtained within different rooms in a building of the University of Algarve will be presented, both in summer and winter conditions, demonstrating the feasibility and performance of the approach. Energy savings resulting from the application of the method are estimated to be greater than 50%.
The ongoing deployment of smart meters and different commercial devices has made electricity disaggregation feasible in buildings and households, based on a single measure of the current and, sometimes, of the voltage. Energy disaggregation is intended to separate the total power consumption into specific appliance loads, which can be achieved by applying Non-Intrusive Load Monitoring (NILM) techniques with a minimum invasion of privacy. NILM techniques are becoming more and more widespread in recent years, as a consequence of the interest companies and consumers have in efficient energy consumption and management. This work presents a detailed review of NILM methods, focusing particularly on recent proposals and their applications, particularly in the areas of Home Energy Management Systems (HEMS) and Ambient Assisted Living (AAL), where the ability to determine the on/off status of certain devices can provide key information for making further decisions. As well as complementing previous reviews on the NILM field and providing a discussion of the applications of NILM in HEMS and AAL, this paper provides guidelines for future research in these topics.
Abstract-A feature detection system has been developed for real-time identification of lines, circles and legs from laser data. A new method suitable for arc/circle detection is proposed: the Internal Angle Variance (IAV). Lines are detected using a recursive line fitting method. The people leg detection is based on geometrical constrains. The system was implemented as a fiducial driver in Player, a mobile robot server. Real results are presented to verify the effectiveness of the proposed algorithms in indoor environment with moving objects.
This study discusses site-specific system optimization efforts related to the capability of a coastal video station to monitor intertidal topography. The system consists of two video cameras connected to a PC, and is operating at the meso-tidal, reflective Faro Beach (Algarve coast, S. Portugal). Measurements from the period February 4, 2009 to May 30, 2010 are discussed in this study. Shoreline detection was based on the processing of variance images, considering pixel intensity thresholds for feature extraction, provided by a specially trained artificial neural network (ANN). The obtained shoreline data return rate was 83%, with an average horizontal cross-shore root mean square error (RMSE) of 1.06 m. Several empirical parameterizations and ANN models were tested to estimate the elevations of shoreline contours, using wave and tidal data. Using a manually validated shoreline set, the lowest RMSE (0.18 m) for the vertical elevation was obtained using an ANN while empirical parameterizations based on the tidal elevation and wave run-up height resulted in an RMSE of 0.26 m. These errors were reduced to 0.22 m after applying 3-D data filtering and interpolation of the topographic information generated for each tidal cycle. Average beach-face slope tan(β) RMSE were around 0.02. Tests for a 5-month period of fully automated operation applying the ANN model resulted in an optimal, average, vertical elevation RMSE of 0.22 m, obtained using a one Responsible Editor: Pierre-Marie Poulain This article is part of the Topical Collection on Multiparametric observation and analysis of the Sea tidal cycle time window and a time-varying beach-face slope. The findings indicate that the use of an ANN in such systems has considerable potential, especially for sites where long-term field data allow efficient training.
The adequacy of radial basis function neural networks to model the inside air temperature of a hydroponic greenhouse as a function of the outside air temperature and solar radiation, and the inside relative humidity, is addressed. As the model is intended to be incorporated in an environmental control strategy both o -line and on-line methods could be of use to accomplish this task. In this paper known hybrid o -line training methods and on-line learning algorithms are analyzed. An o -line method and its application to on-line learning is proposed. It exploits the linear-non-linear structure found in radial basis function neural networks.
In our previous papers, fuzzy model identification methods were discussed. The bacterial evolutionary algorithm for extracting fuzzy rule base from a training set was presented. The LevenbergMarquardt method was also proposed for determining membership functions in fuzzy systems. The combination of the evolutionary and the gradient-based learning techniques is usually called memetic algorithm. In this paper, a new kind of memetic algorithm, the bacterial memetic algorithm, is introduced for fuzzy rule extraction. The paper presents how the bacterial evolutionary algorithm can be improved with the Levenberg-Marquardt technique. C 2009 Wiley Periodicals, Inc.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.