SummaryThe present study was undertaken to determine anthropometrical parameters in male adult Wistar rats. We tested the hypothesis that the anthropometrical index may identify obesity and may predict its adverse effects on lipid profile and oxidative stress in rats. Two experimental protocols were performed. In the first experiment, 50 male Wistar rats, 21 days old and fed a control chow were studied up to 150 days of age. In the second experiment, male Wistar rats, 60 days old, were divided into three groups (n ¼ 8): control (C) given free access to a control chow; (S) receiving the control chow and drinking 30% sucrose ad libitum and (HC) fed a high-carbohydrate diet ad libitum. The first experiment showed that food consumption, energy intake and body weight increased with increasing age, while specific rate of body mass gain was significantly decreased. There were no significant differences in body length and thoracic circumference of rats from 60 days of age. The abdominal circumference (AC) and body mass index (BMI) significantly increased with enhancing age in rats up to 90 days of age and remained constant thereafter. In the second experiment, after 30 days of dietary treatment, the final body weight, body mass gain, carcass fat and BMI were higher in S and HC rats than in C. There were no significant alterations in body length and carcass protein among the groups. Triacylglycerol (TG), total cholesterol (CT), low-density lipoprotein cholesterol (LDL-C) and lipid hydroperoxide (LH) were higher in S and HC rats than in C. High-density lipoprotein cholesterol (HDL-C) decreased in HC rats and total antioxidant substances (TAS) decreased in S and HC rats. There were positive correlations between BMI with carcass fat, BMI with LH and BMI and serum TG concentration. In conclusion, the BMI for male adult Wistar rats ranged between 0.45 and 0.68 g/cm 2 . Obesity may be easily estimated from the BMI in rats. Alterations in BMI were associated with dyslipidemic profile and oxidative stress in serum of rats and BMI may predict these adverse consequences of the obesity in rats.
BackgroundObesity is rapidly becoming a worldwide epidemic that affects children and adults. Some studies have shown a relationship between obesity and infertility, but until now it remains controversial. Thus, the aim of the present study was to investigate the effect of high-fat diet-induced obesity on male reproductive parameters.MethodsIn a first experiment, male Wistar rats were fed a high-fat diet (HFD) or standard chow (SD) for 15, 30 or 45 weeks, after which they were evaluated by adiposity index, serum leptin levels, reproductive organ weights and sperm counts. In a second experiment, rats received HFD or SD only for 15 weeks, long enough to cause obesity. Sexual hormones and sexual behavior were evaluated in these animals, as well as fertility after natural mating. Another group of rats was submitted to motility analysis and fertility evaluation after in utero insemination.ResultsAfter 15, 30 or 45 weeks, HFD-fed animals presented significant increases in obesity index and serum leptin levels. Reproductive organ weights and sperm counts in the testis and epididymis were similar between the two groups at all timepoints studied. Sexual behavior was not altered by the diet regimen, and HFD fertility after natural mating was also similar to SD-fed animals. Intergroup testosterone levels were also comparable, but estradiol levels were increased in HFD rats. Furthermore, sperm quality was reduced in HFD animals as evidenced by their decreased percentage of sperm with progressive movement. This altered motility parameter was followed by a trend toward reduction in fertility potential after artificial in utero insemination.ConclusionsThe results reported herein showed that obesity can affect sperm quality, by reducing sperm motility, without affecting other sperm parameters. The low sperm quality caused a slight reduction in fertility potential, showing that obesity may lead to impairment in male fertility.
The mechanisms by which diet-induced obesity cause remodeling and cardiac dysfunction are still unknown. Interstitial collagen and myocardial ultrastructure are important in the development of left ventricular hypertrophy, and are essential to the adaptive and maladaptive changes associated with obesity. Thus, the accumulation of collagen and ultrastructural damage may contribute to cardiac dysfunction in obesity. The purpose of the present study was to investigate cardiac function in a rat model of diet-induced obesity and to test the hypothesis that cardiac dysfunction induced by obesity is related to myocardial collagen deposition and ultrastructural damage. Thirty-day-old male Wistar rats were fed standard (control [C]) and hypercaloric diets (obese [Ob]) for 15 weeks. Cardiac function was evaluated by echocardiogram and isolated left ventricle papillary muscle. Cardiac morphology was assessed by histology and electron microscopy. Compared with C rats, Ob rats had increased body fat, systolic blood pressure and area under the curve for glucose, leptin and insulin plasma concentrations. Echocardiographic indexes indicated that Ob rats had increased left ventricular mass, increased systolic stress and depressed systolic function. Analysis of the isolated papillary muscle was consistent with higher myocardial stiffness in Ob compared with C rats. The Ob rats had an increase in myocardial collagen and marked ultrastructural changes compared with C rats. Obesity promotes pathological cardiac remodeling with systolic dysfunction and an increase in myocardial stiffness, which, in turn, is probably related to afterload elevation and cardiac fibrosis. Obesity also causes damage to myocardial ultrastructure, but its effect on myocardial function needs to be further clarified.
Obesity has been shown to impair myocardial performance. Nevertheless, the mechanisms underlying the participation of calcium (Ca(2+) ) handling on cardiac dysfunction in obesity models remain unknown. L-type Ca(2+) channels and sarcoplasmic reticulum (SR) Ca(2+) -ATPase (SERCA2a), may contribute to the cardiac dysfunction induced by obesity. The purpose of this study was to investigate whether myocardial dysfunction in obese rats is related to decreased activity and/or expression of L-type Ca(2+) channels and SERCA2a. Male 30-day-old Wistar rats were fed standard (C) and alternately four palatable high-fat diets (Ob) for 15 weeks. Obesity was determined by adiposity index and comorbidities were evaluated. Myocardial function was evaluated in isolated left ventricle papillary muscles under basal conditions and after inotropic and lusitropic maneuvers. L-type Ca(2+) channels and SERCA2a activity were determined using specific blockers, while changes in the amount of channels were evaluated by Western blot analysis. Phospholamban (PLB) protein expression and the SERCA2a/PLB ratio were also determined. Compared with C rats, the Ob rats had increased body fat, adiposity index and several comorbidities. The Ob muscles developed similar baseline data, but myocardial responsiveness to post-rest contraction stimulus and increased extracellular Ca(2+) was compromised. The diltiazem promoted higher inhibition on developed tension in obese rats. In addition, there were no changes in the L-type Ca(2+) channel protein content and SERCA2a behavior (activity and expression). In conclusion, the myocardial dysfunction caused by obesity is related to L-type Ca(2+) channel activity impairment without significant changes in SERCA2a expression and function as well as L-type Ca(2+) protein levels.
zoni DM, Padovani CR, Cicogna AC, Okoshi MP. Echocardiographic detection of congestive heart failure in postinfarction rats. J Appl Physiol 111: 543-551, 2011. First published May 26, 2011 doi:10.1152/japplphysiol.01154.2010.-In studies of congestive heart failure (CHF) treatment, it is essential to select animals with a similar degree of cardiac dysfunction. However, this is difficult to establish without hemodynamic evaluation in rat postinfarctioninduced CHF. This study aimed to diagnose CHF in long-term follow-up postinfarction rats using only echocardiographic criteria through a J-tree cluster analysis and Fisher's linear discriminant function. Two sets of sham and infarcted rats were studied. The first was used to perform cluster analysis and the second to prospectively validate the results. Six months after inducing myocardial infarction (MI), rats were subjected to transthoracic echocardiography. Infarct size was measured by histological analysis. Six echocardiographic variables were used in the cluster analysis: left ventricular (LV) systolic dimension, LV diastolic dimension-to-body weight ratio, left atrial diameter-to-body weight ratio, LV posterior wall shortening velocity, E wave, and isovolumetric relaxation time. Cluster analysis joined the rats into one sham and two MI groups. One MI cluster had more severe anatomical and echocardiographic changes and was called MI with heart failure (MI/HFϩ, n ϭ 24, infarct size: 42.7 Ϯ 5.8%). The other had less severe changes and was called MI without heart failure (MI/HFϪ, n ϭ 11, infarct size: 32.3 Ϯ 9.9%; P Ͻ 0.001 vs. MI/HFϩ). Three rats with small infarct size (21.6 Ϯ 2.2%) presenting mild cardiac alterations were misallocated in the sham group. Fisher's linear discriminant function was built using these groups and used to prospectively classify additional groups of shamoperated (n ϭ 20) and infarcted rats (n ϭ 57) using the same echocardiographic parameters. The discriminant function therefore detected CHF with 100% specificity and 80% sensitivity considering allocation in MI/HFϩ and sham group, and 100% specificity and 58.8% sensitivity considering MI/HFϩ and MI/HFϪ groups, taking into account pathological criteria of CHF diagnosis. Echocardiographic analysis can be used to accurately predict congestive heart failure in postinfarction rats. myocardial infarction; echocardiography; cluster analysis CONGESTIVE HEART FAILURE (CHF) is a major cause of morbidity and mortality. Animal myocardial infarction (MI) models are considered highly relevant in pathophysiology studies and heart failure treatment, as myocardial ischemia and infarction are common causes of CHF in humans (24). The rat MI model has been extensively used in CHF experimental studies because it is practical and of relatively low cost compared with other animal models. However, rat coronary artery ligation leads to a wide range of infarct size, cardiac remodeling, and left ventricular (LV) dysfunction (37, 44). As transition from compensated LV dysfunction to CHF mainly occurs in hearts with ...
Background: Physical exercise is a strategy to control hypertension and attenuate pressure overload-induced cardiac remodeling. The influence of exercise on cardiac remodeling during uncontrolled hypertension is not established. We evaluated the effects of a long-term low intensity aerobic exercise protocol on heart failure (HF) development and cardiac remodeling in aging spontaneously hypertensive rats (SHR). Methods: Sixteen month old SHR (n=50) and normotensive Wistar-Kyoto (WKY, n=35) rats were divided into sedentary (SED) and exercised (EX) groups. Rats exercised in treadmill at 12 m/min, 30 min/day, 5 days/week, for four months. The frequency of HF features was evaluated at euthanasia. Statistical analyses: ANOVA and Tukey or Mann-Whitney, and Goodman test. Results: Despite slightly higher systolic blood pressure, SHR-EX had better functional capacity and lower HF frequency than SHR-SED. Echocardiography and tissue Doppler imaging showed no differences between SHR groups. In SHR-EX, however, left ventricular (LV) systolic diameter, larger in SHR-SED than WKY-SED, and endocardial fractional shortening, lower in SHR-SED than WKY-SED, had values between those in WKY-EX and SHR-SED not differing from either group. Myocardial function, assessed in LV papillary muscles, showed improvement in SHR-EX over SHR-SED and WKY-EX. LV myocardial collagen fraction and type I and III collagen gene expression were increased in SHR groups. Myocardial hydroxyproline concentration was lower in SHR-EX than SHR-SED. Lysyl oxidase gene expression was higher in SHR-SED than WKY-SED. Conclusion: Exercise improves functional capacity and reduces decompensated HF in aging SHR independent of elevated arterial pressure. Improvement in functional status is combined with attenuation of LV and myocardial dysfunction and fibrosis.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers