Therapeutics that are designed to engage RNA interference (RNAi) pathways have the potential to provide new, major ways of imparting therapy to patients.1,2 Fire et al. first demonstrated that long, double stranded RNAs mediate RNAi in Caenorhabditis elegans,3 and Elbashir et al. opened the pathway to the use of RNAi for human therapy by showing that small interfering RNAs (siRNAs: ca. 21 base pair double stranded RNA) can elicit RNAi in mammalian cells without producing an interferon response.4 We are currently conducting the first-in-human Phase I clinical trial involving the systemic administration of siRNA to patients with solid cancers using a targeted, nanoparticle delivery system. Here we provide evidence of inducing an RNAi mechanism of action in a human from the delivered siRNA. Tumor biopsies from melanoma patients obtained after treatment reveal: (i) the presence of intracellularly-localized nanoparticles in amounts that correlate with dose levels of the nanoparticles administered (this is a first for systemically delivered nanoparticles of any kind), and (ii) reduction in both the specific mRNA (M2 subunit of ribonucleotide reductase (RRM2)) and the protein (RRM2) when compared to pre-dosing tissue. Most importantly, we detect the presence of an mRNA fragment that demonstrates siRNA mediated mRNA cleavage occurs specifically at the site predicted for an RNAi mechanism from a patient who received the highest dose of the nanoparticles. These data when taken in total demonstrate that siRNA administered systemically to a human can produce a specific gene inhibition (reduction in mRNA and protein) by an RNAi mechanism of action.
The recommended dose for disease-directed studies of OSI-774 administered orally on a daily, continuous, uninterrupted schedule is 150 mg/d. OSI-774 was well tolerated, and several patients with epidermoid malignancies demonstrated either antitumor activity or relatively long periods of stable disease. The precise contribution of OSI-774 to these effects is not known.
We evaluated the safety, pharmacokinetic profi le, pharmacodynamic effects, and antitumor activity of abemaciclib, an orally bioavailable inhibitor of cyclin-dependent kinases (CDK) 4 and 6, in a multicenter study including phase I dose escalation followed by tumorspecifi c cohorts for breast cancer, non-small cell lung cancer (NSCLC), glioblastoma, melanoma, and colorectal cancer. A total of 225 patients were enrolled: 33 in dose escalation and 192 in tumor-specifi c cohorts. Dose-limiting toxicity was grade 3 fatigue. The maximum tolerated dose was 200 mg every 12 hours. The most common possibly related treatment-emergent adverse events involved fatigue and the gastrointestinal, renal, or hematopoietic systems. Plasma concentrations increased with dose, and pharmacodynamic effects were observed in proliferating keratinocytes and tumors. Radiographic responses were achieved in previously treated patients with breast cancer, NSCLC, and melanoma. For hormone receptor-positive breast cancer, the overall response rate was 31%; moreover, 61% of patients achieved either response or stable disease lasting ≥ 6 months.
SIGNIFICANCE:Abemaciclib represents the fi rst selective inhibitor of CDK4 and CDK6 with a safety profi le allowing continuous dosing to achieve sustained target inhibition. This fi rst-in-human experience demonstrates single-agent activity for patients with advanced breast cancer, NSCLC, and other solid tumors. Cancer Discov; 6(7); 740-53.
MK-2206 was well tolerated, with evidence of AKT signaling blockade. Rational combination trials are ongoing to maximize clinical benefit with this therapeutic strategy.
Purpose: This study evaluated the clinical relevance of the dual-targeting strategy involving PI3K/AKT/ mTOR and RAF/MEK/ERK pathways.Experimental Design: We investigated safety, efficacy, and correlations between tumor genetic alterations and clinical benefit in 236 patients with advanced cancers treated with phase I study drugs targeting phosphoinositide 3-kinase (PI3K) and/or mitogen-activated protein kinase (MAPK) pathways in our Phase I Clinical Trials Program.Results: Seventy-six (32.2%) patients received a PI3K pathway inhibitor in combination with a MAPK pathway inhibitor (D), whereas 124 (52.5%) and 36 (15.3%), respectively, received an inhibitor of either the PI3K or MAPK pathways (S). The rates of drug-related grade >III adverse events were 18.1% for (S) and 53.9% for (D; P < 0.001); the rates of dose-limiting toxicities were 9.4% for (S) and 18.4% for (D; P ¼ 0.06). The most frequent grade >III adverse events were transaminase elevations, skin rash, and mucositis. In our comprehensive tumor genomic analysis, of 9 patients who harbored coactivation of both pathways (colorectal cancer, n ¼ 7; melanoma, n ¼ 2), all 5 patients treated with (D) had tumor regression ranging from 2% to 64%.Conclusions: These results suggest that dual inhibition of both pathways may potentially exhibit favorable efficacy compared with inhibition of either pathway, at the expense of greater toxicity. Furthermore, this parallel pathway targeting strategy may be especially important in patients with coexisting PI3K pathway genetic alterations and KRAS or BRAF mutations and suggests that molecular profiling and matching patients with combinations of these targeted drugs will need to be investigated in depth. Clin Cancer Res; 18(8); 2316-25. Ó2012 AACR.
Purpose:To assess the feasibility of administering XRP6258, a new taxane with a low affinity for the multidrug resistance 1protein, as a 1-hour i.v. infusion every 3 weeks.The study also sought to determine the maximum tolerated dose and the recommended dose, to describe the pharmacokinetic (PK) behavior of the compound, and to seek preliminary evidence of anticancer activity. Experimental Design: Twenty-five patients with advanced solid malignancies were treated with 102 courses of XRP6258 at four dose levels ranging from 10 to 25 mg/m 2 . Dose escalation was based on the occurrence of dose-limiting toxicity (DLT) at each dose level, provided that PK variables were favorable. The maximum tolerated dose was defined as the dose at which at least two patients developed a DLTat the first course. Results: Neutropenia was the principal DLT, with one patient experiencing febrile neutropenia and two others showing prolonged grade 4 neutropenia at the 25 mg/m 2 dose level. Nonhematologic toxicities, including nausea, vomiting, diarrhea, neurotoxicity, and fatigue, were generally mild to moderate in severity. XRP6258 exhibited dose-proportional PK, a triphasic elimination profile, a long terminal half-life (77.3 hours), a high clearance (mean CL, 53.5 L/h), and a large volume of distribution (mean V ss , 2,034 L/m 2 ). Objective antitumor activity included partial responses in two patients with metastatic prostate carcinoma, one unconfirmed partial response, and two minor responses. Conclusion: The recommended phase II dose of XRP6258 on this schedule is 20 mg/m 2 . The general tolerability and encouraging antitumor activity in taxane-refractory patients warrant further evaluations of XRP6258.
AMG 479 can be administered safely at 20 mg/kg IV Q2W. The absence of severe toxicities, attainment of serum concentrations associated with high levels of IGF-1R binding on neutrophils, and provocative antitumor activity warrant additional studies of this agent.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.