The gut microbiota is increasingly recognized as an important regulator of host immunity and brain health. The aging process yields dramatic alterations in the microbiota, which is linked to poorer health and frailty in elderly populations. However, there is limited evidence for a mechanistic role of the gut microbiota in brain health and neuroimmunity during aging processes. Therefore, we conducted fecal microbiota transplantation from either young (3-4 months) or old (19-20 months) donor mice into aged recipient mice (19-20 months). Transplant of a microbiota from young donors reversed agingassociated differences in peripheral and brain immunity, as well as the hippocampal metabolome and transcriptome of aging recipient mice. Finally, the young donor-derived microbiota attenuated selective age-associated impairments in cognitive behavior when transplanted into an aged host. Our results reveal that the microbiome may be a suitable therapeutic target to promote healthy aging.Aging triggers metabolic and immune alterations that lead to perturbation of brain function and behavior, including impairments in hippocampal-associated cognitive behavior 1 . Notably, the gut microbiota, encompassing the population of trillions of microorganisms, undergoes a parallel community shift, which has been correlated to changes in host frailty and cognition 2,3 .Animal models have shown specific roles for the microbiota in shaping hallmarks of aging in the gut 4,5 . Moreover, the consequences of an elderly-associated microbiota on a young host involve alterations in host immunity, neurogenesis and cognition [6][7][8][9] . Notably, transferring microbiota from young fish (African turquoise killifish) into middle-aged fish improves lifespan and motor behavior 10 . However, it is completely unknown whether microbiota from young donors can restore aging-associated impairments in mammals.To determine whether fecal microbiota transplantation (FMT) from young mice can ameliorate aging-induced neurocognitive and immune impairments, we collected fecal microbiota from naive young mice (3-4 months) and transplanted this into aged mice ('aged yFMT' , 19-20 months). A separate group of aged mice received fecal microbiota from naive old mice to control for handling during FMT administration ('aged oFMT' ,(19)(20). To allow aging-associated comparisons, naive young mice received the same yFMT mixture ('young yFMT'). We found aging-associated differences in microbiota (Fig. 1 and Supplementary Tables 1 and 2), immunity (Fig. 2 and Extended Data Figs. 2 and 3), hippocampal neurogenesis (Extended Data Fig. 2), hippocampal metabolomics (Fig. 3, Extended Data Fig. 7 and Supplementary Table 3) and transcriptomics (Fig. 2 and Extended Data Fig. 7), and behavior (Fig. 4 and Extended Data Fig. 5); some, but not all, of which were attenuated by microbiota transplantation from a young mouse into an aged host. Our research offers the possibility that a microbiota from a young individual may have beneficial effects when given to an aged host.