Machinery for the assembly of the iron-sulfur ([Fe-S]) clusters that function as cofactors in a wide variety of proteins has been identified in microbes, insects, and animals. Homologs of the genes involved in [Fe-S] cluster biogenesis have recently been found in plants, as well, and point to the existence of two distinct systems in these organisms, one located in plastids and one in mitochondria. Here we present the first biochemical confirmation of the activity of two components of the mitochondrial machinery in Arabidopsis, AtNFS1 and AtISU1. Analysis of the expression patterns of the corresponding genes, as well as AtISU2 and AtISU3, and the phenotypes of plants in which these genes are up or down-regulated are consistent with a role for the mitochondrial [Fe-S] assembly system in the maturation of proteins required for normal plant development.
The present report aimed to perform a molecular epidemiological survey by investigating the presence of virulence factors in E. faecalis isolated from different human clinical (n = 57) and food samples (n = 55) in Porto Alegre, Brazil, collected from 2006 to 2009. In addition, the ability to form biofilm in vitro on polystyrene and the β-haemolytic and gelatinase activities were determined. Clinical strains presented a higher prevalence of aggregation substance (agg), enterococcal surface protein (esp) and cytolysin (cylA) genes when compared with food isolates. The esp gene was found only in clinical strains. On the other hand, the gelatinase (gelE) and adherence factor (ace) genes had similar prevalence among the strains, showing the widespread occurrence of these virulence factors among food and clinical E. faecalis strains in South Brazil. More than three virulence factor genes were detected in 77.2% and 18.2% of clinical and food strains, respectively. Gelatinase and β-haemolysin activities were not associated with the presence of gelE and cylA genes. The ability to produce biofilm was detected in 100% of clinical and 94.6% of food isolates, and clinical strains were more able to form biofilm than the food isolates (Student’s t-test, p < 0.01). Results from the statistical analysis showed significant associations between strong biofilm formation and ace (p = 0.015) and gelE (p = 0.007) genes in clinical strains. In conclusion, our data indicate that E. faecalis strains isolated from clinical and food samples possess distinctive patterns of virulence factors, with a larger number of genes that encode virulence factors detected in clinical strains.
Enterococci are natural inhabitants of the gastrointestinal tracts in humans and animals. Epidemiological data suggest that enterococci are important reservoirs of antimicrobial resistant genes that may be transmitted from other bacterial species The aim of this study was to investigate the species composition, antimicrobial resistance and virulence genes in enterococci recovered from fecal samples of wild Arctocephalus australis and A. tropicalis found dead along the South Coast of Brazil. From a total of 43 wild fur seals, eleven were selected for this study. Phenotypic and genotypic characterizations were used to classify Enterococcus species. Strains were tested for susceptibility to 10 antibiotics, presence of ace, gelE, asa, cylA, tet(L), tet(M) and erm(B) genes by PCR, and genetic variability using RAPD-PCR. Among the 50 enterococci isolated, 40% were Enterococcus faecalis, 40% E. hirae, 12% E. casseliflavus and 8 % other enterococcal species. Resistance profiles were observed to erythromycin, nitrofurantoin, tetracycline, norfloxacin and ciprofloxacin. The prevalence of virulence genes was ace (68%), gelE (54%), asa (22%) and cylA (4%). In erythromycin- and tetracycline strains, erm(B) and tet(M) were detected, respectively. The RAPD-PCR demonstrated a close phylogenetic relationship between the enterococci isolated from A. australis and A. tropicalis. In conclusion, different enterococcus species showing antimicrobial resistance and virulence determinates were isolated from fecal samples of fur seals. Antibiotic resistant strains in these animals could be related within food chain and aquatic pollutants or linked to environmental resistome, and demonstrates the potential importance of these animals as reservoirs and disseminators of such determinants in marine environmental.
Fifty-six Enterococcus spp. strains were isolated from foods in Southern Brazil, confirmed by PCR and classified as Enterococcus faecalis (27), Enterococcus faecium (23) and Enterococcus spp (6). Antimicrobial susceptibility tests showed resistance phenotypes to a range of antibiotics widely administrated in humans such as gentamycin, streptomycin, ampicillin and vancomycin.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.