Cyanobacteria are photosynthetic prokaryotes found in a range of environments. They are infamous for the production of toxins, as well as bioactive compounds, which exhibit anticancer, antimicrobial and protease inhibition activities. Cyanobacteria produce a broad range of antifungals belonging to structural classes, such as peptides, polyketides and alkaloids. Here, we tested cyanobacteria from a wide variety of environments for antifungal activity. The potent antifungal macrolide scytophycin was detected in Anabaena sp. HAN21/1, Anabaena cf. cylindrica PH133, Nostoc sp. HAN11/1 and Scytonema sp. HAN3/2. To our knowledge, this is the first description of Anabaena strains that produce scytophycins. We detected antifungal glycolipopeptide hassallidin production in Anabaena spp. BIR JV1 and HAN7/1 and in Nostoc spp. 6sf Calc and CENA 219. These strains were isolated from brackish and freshwater samples collected in Brazil, the Czech Republic and Finland. In addition, three cyanobacterial strains, Fischerella sp. CENA 298, Scytonema hofmanni PCC 7110 and Nostoc sp. N107.3, produced unidentified antifungal compounds that warrant further characterization. Interestingly, all of the strains shown to produce antifungal compounds in this study belong to Nostocales or Stigonematales cyanobacterial orders.
The genus Leptolyngbya Anagnostidis & Komá rek (1988) was described from a set of strains identified as 'LPP-group B'. The morphology within this group is not particularly informative and underestimates the group's genetic diversity. In the present study, two new pseudanabaenacean genera related to Leptolyngbya morphotypes, Pantanalinema gen. nov. and Alkalinema gen. nov., are described under the provisions of the International Code of Nomenclature for Algae, Fungi and Plants, based on a polyphasic approach. Pantanalinema gen. nov. (type species Pantanalinema rosaneae sp. nov.) has sheaths and trichomes with slight gliding motility, which distinguish this genus from Alkalinema gen. nov. (type species Alkalinema pantanalense sp. nov.), which possesses trichomes arranged in an ornate (interwoven) pattern. 16S rRNA gene sequences of strains of Pantanalinema and Alkalinema exhibited low identity to each other (¡91.6 %) and to other sequences from known pseudanabaenacean genera (¡94.3 and 93.7 %, respectively). In a phylogenetic reconstruction, six sequences from strains of Pantanalinema and four from strains of Alkalinema formed two separate and robust clades (99 % bootstrap value), with the genera Oculatella and Phormidesmis, respectively, as the closest related groups. 16S-23S rRNA intergenic spacer sequences and secondary structures of strains of Pantanalinema and Alkalinema did not correspond to any previous descriptions. The strains of Pantanalinema and Alkalinema were able to survive and produce biomass at a range of pH (pH 4-11) and were also able to alter the culture medium to pH values ranging from pH 8.4 to 9.9. These data indicate that cyanobacterial communities in underexplored environments, such as the Pantanal wetlands, are promising sources of novel taxa.The cyanobacteria constitute a bacterial phylum with great morphological and metabolic diversity and are ubiquitous on Earth, including extreme environments (Castenholz & Waterbury, 1989). The classification of this microbial group has long been based on morphological traits, which are currently insufficient to delimit genera and species (Taton et al., 2003(Taton et al., , 2006Turicchia et al., 2009;Zammit et al., 2012; Genuário et al., 2013;Silva et al., 2014). In attempting to clarify cyanobacterial classification, many studies have applied a combination of morphological, ecological and molecular data (Perkerson et al., 2011; Hašler et al., 2012;Zammit et al., 2012;Andreote et al., 2014;Silva et al., 2014), and phylogenies based on the 16S rRNA gene have been widely used for generic definitions (Fox et al., 1992; Johansen & Casamata, 2005;Perkerson et al., 2011). Phylogenies based on this gene have demonstrated that some morphologically described genera are well defined in terms of evolutionary relationships (Komárek & Kaštovský, 2003; Willame et al., 2006; Komárek, 2010). However, data that have been obtained from 16S rRNA gene phylogenies have also led to the separation and definition of new genera, such as Desmonostoc The GenBank/EMBL/DDBJ acce...
Saline-alkaline lakes are extreme environments that limit the establishment and development of life. The Nhecolândia, a subregion of the Pantanal wetland in Brazil, is characterized by the existence of ~500 saline-alkaline lakes, which support an underexplored and rich diversity of microorganisms. In this study, unicellular and homocytous cyanobacteria from five saline-alkaline lakes were accessed by culture-dependent approaches. Morphological evaluation and analyses of near complete sequences (~1400 nt) of the 16S rRNA genes were applied for phylogenetic and taxonomic placement. This polyphasic approach allowed for the determination of the taxonomic position of the isolated strains into the following genera: Cyanobacterium, Geminocystis, Phormidium, Leptolyngbya, Limnothrix, and Nodosilinea. In addition, fourteen Pseudanabaenales and Oscillatoriales representatives of putative novel taxa were found. These sequences fell into five new clades that could correspond to new generic units of the Pseudanabaenaceae and Phormidiaceae families.
Cyanobacteria from underexplored and extreme habitats are attracting increasing attention in the search for new bioactive substances. However, cyanobacterial communities from tropical and subtropical regions are still largely unknown, especially with respect to metabolite production. Among the structurally diverse secondary metabolites produced by these organisms, peptides are by far the most frequently described structures. In this work, liquid chromatography/electrospray ionization coupled to high resolution quadrupole time-of-flight tandem mass spectrometry with positive ion detection was applied to study the peptide profile of a group of cyanobacteria isolated from the Southeastern Brazilian coastal forest. A total of 38 peptides belonging to three different families (anabaenopeptins, aeruginosins, and cyanopeptolins) were detected in the extracts. Of the 38 peptides, 37 were detected here for the first time. New structural features were proposed based on mass accuracy data and isotopic patterns derived from full scan and MS/MS spectra. Interestingly, of the 40 surveyed strains only nine were confirmed to be peptide producers; all of these strains belonged to the order Nostocales (three Nostoc sp., two Desmonostoc sp. and four Brasilonema sp.).
Soda lakes have high levels of sodium carbonates and are characterized by salinity and elevated pH. These ecosystems are found across Africa, Europe, Asia, Australia, North, Central, and South America. Particularly in Brazil, the Pantanal region has a series of hundreds of shallow soda lakes (ca. 600) potentially colonized by a diverse haloalkaliphilic microbial community. Biological information of these systems is still elusive, in particular data on the description of the main taxa involved in the biogeochemical cycling of life-important elements. Here, we used metagenomic sequencing to contrast the composition and functional patterns of the microbial communities of two distinct soda lakes from the sub-region Nhecolândia, state of Mato Grosso do Sul, Brazil. These two lakes differ by permanent cyanobacterial blooms (Salina Verde, green-water lake) and by no record of cyanobacterial blooms (Salina Preta, black-water lake). The dominant bacterial species in the Salina Verde bloom was Anabaenopsis elenkinii. This cyanobacterium altered local abiotic parameters such as pH, turbidity, and dissolved oxygen and consequently the overall structure of the microbial community. In Salina Preta, the microbial community had a more structured taxonomic profile. Therefore, the distribution of metabolic functions in Salina Preta community encompassed a large number of taxa, whereas, in Salina Verde, the functional potential was restrained across a specific set of taxa. Distinct signatures in the abundance of genes associated with the cycling of carbon, nitrogen, and sulfur were found. Interestingly, genes linked to arsenic resistance metabolism were present at higher abundance in Salina Verde and they were associated with the cyanobacterial bloom. Collectively, this study advances fundamental knowledge on the composition and genetic potential of microbial communities inhabiting tropical soda lakes.
The taxonomy of four isolated strains of Anabaenopis elenkinii and A. arnoldii from North and South America were investigated using a polyphasic approach. The studied populations were collected from seven alkaline lakes of the Brazilian Pantanal and Nabor Carrillo Lake, Texcoco region (Mexico), between 2004 and 2012, where they frequently formed blooms during the dry season. The morphological plasticity of the populations, from natural and culture conditions, was described based on 200 individuals of each species. The 16S rRNA and the cpc-BA-IGS phylogenetic analyses show Anabaenopsis as a sister-taxon of Cyanospira. The Anabaenopsis clade has three strongly supported subclusters related to the origin of strains: Pantanal+Mexico, Kenya+Australia and one European clade. Although these data indicate that the currently known Anabaenopsis strains belong to more than one species, we are being conservative and not describing them as new species due to the lack of more molecular data. We highlight the need of a revision of the genus, considering also that Anabaenopsis sp. PCC 9215, the current reference strain used for the genus, is not identified as A. elenkinii and it is phylogenetically grouped with Anabaenopsis strains identified as A. circularis, A. arnoldii, A. nadsonii and A. elenkinii.
Studies investigating the diversity of cyanobacteria from tropical environments are scarce, especially those devoted to the isolation and molecular characterization of the isolated strains. Among the Brazilian biomes, Pantanal has mainly been examined through microscopic observation of environmental samples, resulting in lists of morphotypes without any genetic information. Recently, two studies were conducted evaluating the morphologic and genetic diversity of cultured non-heterocytous cyanobacteria in this biome, which resulted in the separation and description of two novel genera. In order to complement the diversity of cultured cyanobacteria from saline-alkaline lakes in Pantanal, the present study is dedicated to the examination of cultured nitrogen-fixing heterocytous cyanobacteria from this extreme and underexplored environment. A total of fourteen cyanobacterial strains were isolated. According to morphological examination they belong to the order Nostocales and to the subsections IV.I and IV.II, according to the International Code of Nomenclature for Algae, Fungi and Plants and the Bergey's Manual of Systematic Bacteriology, respectively. Phylogenetic evaluation of their 16S rRNA gene sequences resulted in the formation of five clusters. Among them, one is clearly related to the genus Anabaenopsis whilst the remaining clusters may represent new genetic lineages. These novel sequences aid in the delimitation of problematic groups, especially those containing sequences belonging to mixed genera. The application of both morphologic and phylogenetic studies has proven to be an important tool in resolving problematic groups in cyanobacteria systematics. This strategy is essential in order to detect novel cyanobacteria genera from other tropical environments.
Cyanobacterial communities on the phyllosphere of 4 plant species inhabiting the endangered Brazilian Atlantic Forest biome were evaluated using cultivation-independent molecular approaches. Total genomic DNA was extracted from cells detached from the surface of leaves of Euterpe edulis, Guapira opposita, Garcinia gardneriana, and Merostachys neesii sampled in 2 Brazilian Atlantic Forest locations along an elevational gradient, i.e., lowland and montane forest. The DNA fingerprinting method PCR-DGGE revealed that the cyanobacterial phyllosphere community structures were mainly influenced by the plant species; geographical location of the plant had little effect. The 16S rRNA gene sequences obtained by clone libraries showed a predominance of nitrogen-fixing cyanobacteria of the order Nostocales, even though the majority of retrieved operational taxonomic units (∼60% of the sequences) showed similarity only to uncultured cyanobacteria phylotypes. The leaf surface of Guapira opposita had the highest richness and diversity of cyanobacteria, whereas the M. neesii (bamboo) had the largest number of copies of cyanobacterial 16S rRNA gene per cm of leaf. This study investigated cyanobacteria diversity and its distribution pattern in Atlantic forest phyllosphere. The results indicated that plant species is the main driver of cyanobacteria community assemblage in the phyllosphere and that these communities are made up of a high diversity of cyanobacterial taxa that need to be discovered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.