Homozygosity mapping led to the identification of new mutations in consanguineous and nonconsanguineous patients with retinal dystrophy. Detailed clinical characterization revealed a variety of retinal appearances, ranging from nearly normal to extensive retinal remodeling, retinal thinning, and debris accumulation. Although CRD was initially diagnosed in all patients, the molecular findings led to a reappraisal of the diagnosis in patients carrying mutations in EYS, CABP4, and KCNV2.
Transforming growth factor-beta(1) (TGF-beta(1)) signal and downstream Smads play an important role in tissue fibrosis and matrix remodeling in various etiologies of heart failure. Inhibitory Smad7 (I-Smad7) is an inducible regulatory Smad protein that antagonizes TGF-beta(1) signal mediated via direct abrogation of R-Smad phosphorylation. The effect of ectopic I-Smad7 on net collagen production was investigated using hydroxyproline assay. Adenovirus-mediated I-Smad7 gene (at 100 multiplicity of infection) transfer was associated with significant decrease of collagen synthesis in the presence and absence of TGF-beta(1) in primary rat cardiac myofibroblasts. In I-Smad7-infected cells, we also observed the ablation of TGF-beta(1)-induced R-Smad2 phosphorylation vs. LacZ controls. Overdriven I-Smad7 was associated with significantly increased expression of immunoreactive 65-kDa matrix metalloproteinase-2 (MMP-2) protein in culture medium of myofibroblast compared with LacZ-infected cells. Expression of the 72-kDa MMP-2 variant, e.g., the inactive form, was not altered by exogenous I-Smad7 transfection/overexpression. Furthermore, I-Smad7 overexpression was associated with a significant increase and decrease in expression of p27 and phospho-Rb protein, respectively, as well as reduced [(3)H]thymidine incorporation vs. Ad-LacZ-infected controls. We suggest that negative modulation of R-Smad phosphorylation by ectopic I-Smad7 may contribute to the downregulation of collagen in cardiac myofibroblasts and may suppress the proliferation of these cells. Thus treatments targeting the collagen deposition by overexpression of I-Smad7 may provide a new therapeutic strategy for cardiac fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.