The energy management of hybrid electric vehicles is becoming an interesting topic for many researchers. Furthermore, the wise choice of the energy management strategy allows not only the best distribution of the power between the used sources, but also it allows reduction of consumption, increase in the lifetime of the sources, and improves the autonomy of the hybrid electric vehicle.The autonomy is guaranteed by the optimization of the embedded sources. In this study, the hybrid system consists of combining the fuel cell as the main source with the battery as the auxiliary source. The novelty of the proposed energy management strategy for the studied hybrid system is the combination between interconnection and damping assignment-passivity based control and the Hamiltonian Jacobi Bellman method. The stability proof is given and the efficiency of the proposed strategy is proved by the experimental work, where the obtained results show the good and adequate results to the proposed scenario.
This work presents a new contribution on energy management of hybrid electric systems for vehicle applications. The studied hybrid electrical vehicle is composed of fuel cell as a main source and the auxiliary system containing the battery and supercapacitor. A programmable load is used to emulate a vehicle load profile. Two methods are combined to smartly and optimally control the energy flow between the used sources. These methods are the Interconnection and Damping Assignment Passivity Based Control (IDA-PBC) and the Hamilton-Jacobi Bellman (HJB) optimization. The source limitation is considered here in terms of the battery state of charge. The experimental works validate the efficiency of the proposed control where the obtained results demonstrate that the used strategy allows regulating the power flow under a realistic load drive profile. The global stability proof is demonstrated using Lyapunov theory.
Keywords-energy management; hybrid system; passivity based control; constraints; Hamilton-Jacobi Bellman method. Parameters Definition ̅ FC current at equilibrium ̅ 1 FC controller at equilibrium ̅ 2 SC controller at equilibrium ̅ 3 Battery controller at equilibrium DC bus capacitance SC capacitance f.e.m load Battery inductance DC bus inductance FC inductance load inductance SC inductance Battery power FC power SC power Load power resistance of load Battery voltage Load voltage FC voltage Load voltage SC voltage reference Desired DC bus voltage f.e.m battery Battery current DC bus current
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.