A body of evidence supports the view that the signaling pathways governing
cellular aging - as well as mechanisms of their modulation by
longevity-extending genetic, dietary and pharmacological interventions - are
conserved across species. The scope of this review is to critically analyze
recent advances in our understanding of cell-autonomous mechanisms of
chronological aging in the budding yeast Saccharomyces
cerevisiae. Based on our analysis, we propose a concept of a
biomolecular network underlying the chronology of cellular aging in yeast. The
concept posits that such network progresses through a series of lifespan
checkpoints. At each of these checkpoints, the intracellular concentrations of
some key intermediates and products of certain metabolic pathways - as well as
the rates of coordinated flow of such metabolites within an intricate network of
intercompartmental communications - are monitored by some checkpoint-specific
ʺmaster regulatorʺ proteins. The concept envisions that a synergistic action of
these master regulator proteins at certain early-life and late-life checkpoints
modulates the rates and efficiencies of progression of such processes as cell
metabolism, growth, proliferation, stress resistance, macromolecular
homeostasis, survival and death. The concept predicts that, by modulating these
vital cellular processes throughout lifespan (i.e., prior to an arrest of cell
growth and division, and following such arrest), the checkpoint-specific master
regulator proteins orchestrate the development and maintenance of a pro- or
anti-aging cellular pattern and, thus, define longevity of chronologically aging
yeast.
A yeast culture grown in a nutrient-rich medium initially containing 2% glucose is not limited in calorie supply. When yeast cells cultured in this medium consume glucose, they undergo cell cycle arrest at a checkpoint in late G1 and differentiate into quiescent and non-quiescent cell populations. Studies of such differentiation have provided insights into mechanisms of yeast chronological aging under conditions of excessive calorie intake. Caloric restriction is an aging-delaying dietary intervention. Here, we assessed how caloric restriction influences the differentiation of chronologically aging yeast cultures into quiescent and non-quiescent cells, and how it affects their properties. We found that caloric restriction extends yeast chronological lifespan via a mechanism linking cellular aging to cell cycle regulation, maintenance of quiescence, entry into a non-quiescent state and survival in this state. Our findings suggest that caloric restriction delays yeast chronological aging by causing specific changes in the following: 1) a checkpoint in G1 for cell cycle arrest and entry into a quiescent state; 2) a growth phase in which high-density quiescent cells are committed to become low-density quiescent cells; 3) the differentiation of low-density quiescent cells into low-density non-quiescent cells; and 4) the conversion of high-density quiescent cells into high-density non-quiescent cells.
We identified a form of cell death called "liponecrosis." It can be elicited by an exposure of the yeast Saccharomyces cerevisiae to exogenous palmitoleic acid (POA). Our data imply that liponecrosis is: (1) a programmed, regulated form of cell death rather than an accidental, unregulated cellular process and (2) an age-related form of cell death. Cells committed to liponecrotic death: (1) do not exhibit features characteristic of apoptotic cell death; (2) do not display plasma membrane rupture, a hallmark of programmed necrotic cell death; (3) akin to cells committed to necrotic cell death, exhibit an increased permeability of the plasma membrane for propidium iodide; (4) do not display excessive cytoplasmic vacuolization, a hallmark of autophagic cell death; (5) akin to cells committed to autophagic death, exhibit a non-selective en masse degradation of cellular organelles and require the cytosolic serine/threonine protein kinase Atg1p for executing the death program; and (6) display a hallmark feature that has not been reported for any of the currently known cell death modalities-namely, an excessive accumulation of lipid droplets where non-esterified fatty acids (including POA) are deposited in the form of neutral lipids. We therefore concluded that liponecrotic cell death subroutine differs from the currently known subroutines of programmed cell death. Our data suggest a hypothesis that liponecrosis is a cell death module dynamically integrated into a so-called programmed cell death network, which also includes the apoptotic, necrotic, and autophagic modules of programmed cell death. Based on our findings, we propose a mechanism underlying liponecrosis.
Phytochemicals are structurally diverse secondary metabolites synthesized by plants and also by non-pathogenic endophytic microorganisms living within plants. Phytochemicals help plants to survive environmental stresses, protect plants from microbial infections and environmental pollutants, provide them with a defense from herbivorous organisms and attract natural predators of such organisms, as well as lure pollinators and other symbiotes of these plants. In addition, many phytochemicals can extend longevity in heterotrophic organisms across phyla via evolutionarily conserved mechanisms. In this review, we discuss such mechanisms. We outline how structurally diverse phytochemicals modulate a complex network of signaling pathways that orchestrate a distinct set of longevity-defining cellular processes. This review also reflects on how the release of phytochemicals by plants into a natural ecosystem may create selective forces that drive the evolution of longevity regulation mechanisms in heterotrophic organisms inhabiting this ecosystem. We outline the most important unanswered questions and directions for future research in this vibrant and rapidly evolving field.
Recent findings suggest that evolutionarily distant organisms share the key features of the aging process and exhibit similar mechanisms of its modulation by certain genetic, dietary and pharmacological interventions. The scope of this review is to analyze mechanisms that in the yeast Saccharomyces cerevisiae underlie: (1) the replicative and chronological modes of aging; (2) the convergence of these 2 modes of aging into a single aging process; (3) a programmed differentiation of aging cell communities in liquid media and on solid surfaces; and (4) longevity-defining responses of cells to some chemical compounds released to an ecosystem by other organisms populating it. Based on such analysis, we conclude that all these mechanisms are programs for upholding the long-term survival of the entire yeast population inhabiting an ecological niche; however, none of these mechanisms is a ʺprogram of agingʺ - i.e., a program for progressing through consecutive steps of the aging process.
Bile acids are cholesterol-derived bioactive lipids that play essential roles in the maintenance of a heathy lifespan. These amphipathic molecules with detergent-like properties display numerous beneficial effects on various longevity- and healthspan-promoting processes in evolutionarily distant organisms. Recent studies revealed that lithocholic bile acid not only causes a considerable lifespan extension in yeast, but also exhibits a substantial cytotoxic effect in cultured cancer cells derived from different tissues and organisms. The molecular and cellular mechanisms underlying the robust anti-aging and anti-tumor effects of lithocholic acid have emerged. This review summarizes the current knowledge of these mechanisms, outlines the most important unanswered questions and suggests directions for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.