In the last 15 years, different types of Triatominae resistance to different insecticides have been reported; thus, resistance may be more widespread than known, requiring better characterization and delimitation, which was the aim of this review. This review was structured on a literature search of all articles from 1970 to 2015 in the PubMed database that contained the keywords Insecticide resistance and Triatominae. Out of 295 articles screened by title, 33 texts were selected for detailed analysis. Insecticide resistance of Triatomines is a complex phenomenon that has been primarily reported in Argentina and Bolivia, and is caused by different factors (associated or isolated). Insecticide resistance of Triatominae is a characteristic inherited in an autosomal and semi-dominant manner, and is polygenic, being present in both domestic and sylvatic populations. The toxicological profi le observed in eggs cannot be transposed to different stages of evolution. Different toxicological profi les exist at macro-and microgeographical levels. The insecticide phenotype has both reproductive and developmental costs. Different physiological mechanisms are involved in resistance. Studies of Triatomine resistance to insecticides highlight three defi ciencies in interpreting the obtained results: I) the vast diversity of methodologies, despite the existence of a single guiding protocol; II) the lack of information on the actual impact of resistance ratios in the fi eld; and III) the concept of the susceptibility reference lineage. Research on the biological and behavioral characteristics of each Triatominae species that has evolved resistance is required in relation to the environmental conditions of each region.
BackgroundGiven the increase in cases of visceral leishmaniasis in recent years, associated with the socio-economic impact of this disease, as well as the wide distribution of Lutzomyia longipalpis in Brazil and the likelihood that this vector may develop resistance to insecticides used for control, the Ministry of Health considers as crucial the creation of a network in order to study and monitor the resistance of this vector to insecticides used for control. In this sense, this study aimed: 1) to characterize the susceptibility of L. longipalpis from Lapinha Cave (Lagoa Santa, MG - Brazil) to Alfateck SC200 in field bioassays, and 2) to define the susceptibility baseline to alpha-cypermethrin in laboratory bioassays, checking the possibility of using it as susceptibility reference lineage (SRL).FindingsThe field bioassays revealed that the tested population was highly susceptible to alpha-cypermethrin in all time periods with high mortality (~100 %) in all treated surfaces before six months after spraying. In the laboratory bioassays, the studied population presented LD50, LD95 and LD99 to 0.78013, 10.5580 and 31.067 mg/m2, respectively. The slope was 1.454121.ConclusionsThe studied population of L. longipalpis was considered as adequate for SRL according criterion recommended by Pan-American Health Organization and has proven susceptibility to tested insecticide in the field. One cannot rule out the possibility of finding populations of L. longipalpis more susceptible to alpha-cypermethrin; therefore, further research is necessary on other populations with potential use as a SRL.
The results of this study indicate that the persistence of residual foci of T. infestans in Bahia and Rio Grande do Sul is not related to insecticide resistance but may be associated with operational failures. In Rio Grande do Sul, we must consider the possibility of continuous reinfestation by Argentinian individuals, which justifies active and efficient epidemiological surveillance.
BackgroundThe persistence of Triatoma infestans and the continuous transmission of Trypanosoma cruzi in the Inter-Andean Valleys and in the Gran Chaco of Bolivia are of great significance. Coincidentally, it is in these regions the reach of the vector control strategies is limited, and reports of T. infestans resistance to insecticides, including in wild populations, have been issued. This study aims to characterize the susceptibility to deltamethrin of wild and domestic populations of T. infestans from Bolivia, in order to better understand the extent of this relevant problem.MethodsSusceptibility to deltamethrin was assessed in nine, wild and domestic, populations of T. infestans from the Gran Chaco and the Inter-Andean Valleys of Bolivia. Serial dilutions of deltamethrin in acetone (0.2 μL) were topically applied in first instar nymphs (F1, five days old, fasting, weight 1.2 ± 0.2 mg). Dose response results were analyzed with PROBIT version 2, determining the lethal doses, slope and resistance ratios (RR). Qualitative tests were also performed.ResultsThree wild T. infestans dark morph samples of Chaco from the Santa Cruz Department were susceptible to deltamethrin with RR50 of <2, and 100% mortality to the diagnostic dose (DD); however, two domestic populations from the same region were less susceptible than the susceptibility reference lineage (RR50 of 4.21 and 5.04 respectively and 93% DD). The domestic population of Villa Montes from the Chaco of the Tarija Department presented high levels of resistance (RR50 of 129.12 and 0% DD). Moreover, the domestic populations from the Valleys of the Cochabamba Department presented resistance (RR50 of 8.49 and 62% DD), the wild populations were less susceptible than SRL and T. infestans dark morph populations (RR50 < 5).ConclusionThe elimination of T. infestans with pyrethroid insecticides in Brazil, Uruguay, Chile, and its drastic reduction in large parts of Paraguay and Argentina, clearly indicates that pyrethroid resistance was very uncommon in non-Andean regions. The pyrethroid susceptibility of non-Andean T. infestans dark morph population, and the resistance towards it, of Andean T. infestans wild and domestic populations, indicates that the Andean populations from Bolivia are less susceptible.
BackgroundTriatoma sordida, a vector of Trypanosoma cruzi, is native of Brazil, Bolivia, Paraguay, Argentina, and Uruguay, and occurs primarily in peridomiciles. Currently, it is the species most frequently captured by the Chagas Disease Control Program in Brazil. For this reason, population genetic studies attract great interest, as they can provide further information about the dispersal and household invasion processes of this species. In the absence of suitable markers, the objective of this study was to test the cross amplification of microsatellite primers.Findings23 primers were tested for microsatellite loci already described for other species of the genus Triatoma sp. Forty four specimens of T. sordida captured in the north of Minas Gerais were used to validate the use of standardized loci for population genetic analyses. It was possible to amplify 10 of the 23 loci tested for T. sordida.ConclusionsThis is the first study that provides 10 microsatellite markers for population analysis of this triatomine species. Cross-amplification of primers can be used among other phylogenetically related species whose loci are already available for study.
BackgroundOver the last few decades, pyrethroid-resistant in Triatoma infestans populations have been reported, mainly on the border between Argentina and Bolivia. Understanding the genetic basis of inheritance mode and heritability of resistance to insecticides under laboratory conditions is crucial for vector management and monitoring of insecticide resistance. Currently, few studies have been performed to characterize the inheritance mode of resistance to pyrethroids in T. infestans; for this reason, the present study aims to characterize the inheritance and heritability of deltamethrin resistance in T. infestans populations from Bolivia with different toxicological profiles.MethodsExperimental crosses were performed between a susceptible (S) colony and resistant (R) and reduced susceptibility (RS) colonies in both directions (♀ x ♂ and ♂ x ♀), and inheritance mode was determined based on degree of dominance (DO) and effective dominance (DML). In addition, realized heritability (h2) was estimated based on a resistant colony, and select pressure was performed for two generations based on the diagnostic dose (10 ng. i. a. /nymph). The F1 progeny of the experimental crosses and the selection were tested by a standard insecticide resistance bioassay.ResultsThe result for DO and DML (< 1) indicates that resistance is an incompletely dominant character, and inheritance is autosomal, not sex-linked. The LD50 for F1 of ♀S x ♂R and ♂S x ♀R was 0.74 and 3.97, respectively, which is indicative of dilution effect. In the resistant colony, after selection pressure, the value of h2 was 0.37; thus, the LD50 value increased 2.25-fold (F2) and 26.83-fold (F3) compared with the parental colony.ConclusionThe inheritance mode of resistance of T. infestans to deltamethrin, is autosomal and an incompletely dominant character; this is a previously known process, confirmed in the present study on T. infestans populations from Bolivia. The lethal doses (LD50) increase from one generation to another rapidly after selection pressure with deltamethrin. This suggests that resistance is an additive and cumulative factor, mainly in highly structured populations with limited dispersal capacity, such as T. infestans. This phenomenon was demonstrated for the first time for T. infestans in the present study. These results are very important for vector control strategies in problematic areas where high resistance ratios of T. infestans have been reported.
Triatoma infestans is an insect of subfamily Triatominae (Hemiptera: Reduviidae) and an important vector of Trypanosoma cruzi, the etiologic agent of human Chagas disease. In this work we reported a transcriptome assembly and annotation of T. infestans heads obtained by Next Generation Sequencing (NGS) technologies.
In spite of long-term efforts to eliminate Triatoma infestans (Klug 1834) from Brazil, residual foci still persist in the states of Bahia and Rio Grande do Sul. Data on the genetic variability and structuring of these populations are however lacking. Using nine microsatellite loci, we characterized one residual T. infestans population from Bahia and four from Rio Grande do Sul, and compared them with bugs originally from an older focus in São Paulo; 224 bugs were genotyped. The number of alleles per locus ranged from 5 to 11. Observed and expected heterozygosities per locus ranged, respectively, from 0 to 0.786 and from 0 to 0.764. Significant departures from Hardy-Weinberg equilibrium, mainly due to heterozygote deficits, were detected in all loci and in most populations. Global indices estimated by AMOVA were: Fis was 0.37; Fst was 0.28; and Fit was 0.55; overall indices with p = 0.00 indicated substantial differentiation. Inter-population Fst ranged from 0.118 to 0.562, suggesting strong genetic structuring and little to no gene flow among populations. Intra-population Fis ranged from 0.301 to 0.307. Inbreeding was apparent in all populations except that from Bahia-which might be either linked by gene flow to nearby unsampled populations or part of a relatively large local population. The overall pattern of strong genetic structuring among pyrethroid-susceptible residual T. infestans populations suggests that their persistence is probably due to operational control failures. Detection and elimination of such residual foci is technically feasible and must become a public health priority in Brazil.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers