The human gut harbors .100 trillion microbial cells, which influence the nutrition, metabolism, physiology, and immune function of the host. Here, we review the quantitative and qualitative changes in gut microbiota of patients with CKD that lead to disturbance of this symbiotic relationship, how this may contribute to the progression of CKD, and targeted interventions to re-establish symbiosis. Endotoxin derived from gut bacteria incites a powerful inflammatory response in the host organism. Furthermore, protein fermentation by gut microbiota generates myriad toxic metabolites, including p-cresol and indoxyl sulfate. Disruption of gut barrier function in CKD allows translocation of endotoxin and bacterial metabolites to the systemic circulation, which contributes to uremic toxicity, inflammation, progression of CKD, and associated cardiovascular disease. Several targeted interventions that aim to re-establish intestinal symbiosis, neutralize bacterial endotoxins, or adsorb gut-derived uremic toxins have been developed. Indeed, animal and human studies suggest that prebiotics and probiotics may have therapeutic roles in maintaining a metabolically-balanced gut microbiota and reducing progression of CKD and uremia-associated complications. We propose that further research should focus on using this highly efficient metabolic machinery to alleviate uremic symptoms.
Trimethylamine N-oxide (TMAO) is a small colorless amine oxide generated from choline, betaine, and carnitine by gut microbial metabolism. It accumulates in the tissue of marine animals in high concentrations and protects against the protein-destabilizing effects of urea. Plasma level of TMAO is determined by a number of factors including diet, gut microbial flora and liver flavin monooxygenase activity. In humans, a positive correlation between elevated plasma levels of TMAO and an increased risk for major adverse cardiovascular events and death is reported. The atherogenic effect of TMAO is attributed to alterations in cholesterol and bile acid metabolism, activation of inflammatory pathways and promotion foam cell formation. TMAO levels increase with decreasing levels of kidney function and is associated with mortality in patients with chronic kidney disease. A number of therapeutic strategies are being explored to reduce TMAO levels, including use of oral broad spectrum antibiotics, promoting the growth of bacteria that utilize TMAO as substrate and the development of target-specific molecules with varying level of success. Despite the accumulating evidence, it is questioned whether TMAO is the mediator of a bystander in the disease process. Thus, it is important to undertake studies examining the cellular signaling in physiology and pathological states in order to establish the role of TMAO in health and disease in humans.
Also known as the “second human genome,” the gut microbiome plays important roles in both the maintenance of health and the pathogenesis of disease. The symbiotic relationship between host and microbiome is disturbed due to proliferation of dysbiotic bacteria in patients with chronic kidney disease (CKD). Fermentation of protein and amino acids by gut bacteria generate excess amounts of potentially toxic compounds such as ammonia, amines, thiols, phenols, and indoles, but generation of short chain fatty acids is reduced. Impaired intestinal barrier function in CKD permits translocation of gut-derived uremic toxins into the systemic circulation, contributing to progression of CKD, cardiovascular disease, insulin resistance, and protein energy wasting. The field of microbiome research is still nascent, but evolving rapidly. Establishing symbiosis to treat uremic syndrome is a novel concept, but if proven effective will have significant impact on the management of patients with CKD.
Here we describe the sustained expression of transgenes introduced into human embryonic stem (ES) cells using self-inactivating lentiviral vectors. At low multiplicity of infection, vesicular stomatitis virus-pseudotyped vectors containing a green fluorescent protein (GFP) transgene under the control of a human elongation factor 1α α promoter transduced human ES cells at high efficiency. The majority of the transduced ES cells, which harbored low numbers of integrated vectors, continued to express GFP after 60 days of culture. Incorporation of a scaffold attachment region (SAR) from the human interferon-β β gene into the lentiviral vector backbone increased the average level of GFP expression, and inclusion of the SAR together with a chromatin insulator from the 5′ ′ end of the chicken β β-globin locus reduced the variability in GFP expression. When the transduced ES cells were induced to differentiate into CD34 + hematopoietic precursors in vitro, GFP expression was maintained with minimal silencing. The ability to efficiently introduce active transgenes into human ES cells will facilitate gain-of-function studies of early developmental processes in the human system. These results also have important implications for the possible future use of gene-modified human ES cells in transplantation and tissue regeneration applications.
Accumulated data indicate that current generation lentiviral vectors, which generally utilize an internal human cytomegalovirus (CMV) immediate early region enhancer-promoter to transcribe the gene of interest, are not yet optimized for efficient expression in human hematopoietic stem/progenitor cells (HSPCs). As a first step toward this goal, we constructed self-inactivating derivatives of the HIV-1-based transfer vector pHR' containing the enhanced green fluorescent protein (GFP) gene as reporter and the Woodchuck hepatitis virus posttranscriptional regulatory element (WPRE). GFP expression was driven by a variety of strong viral and cellular promoters, including the murine stem cell virus (MSCV) long terminal repeat (LTR), a Gibbon ape leukemia virus (GALV) LTR, the human elongation factor 1alpha (EF1alpha) promoter, the composite CAG promoter (consisting of the CMV immediate early enhancer and the chicken beta-actin promoter), and the human phosphoglycerate kinase 1 (PGK) promoter. In contrast to results obtained in human embryonic kidney 293T cells and fibrosarcoma HT1080 cells, in which the CMV promoter expressed GFP at the highest levels, significantly higher levels of GFP expression (3- to 5-fold) were achieved with the MSCV LTR, the EF1alpha promoter, and the CAG promoter in the human HSPC line KG1a. Removal of the WPRE indicated that it stimulated GFP expression from all of the vectors in KG1a cells (up to 3-fold), although it only marginally improved the performance of the intron-containing EF1alpha and CAG promoters (<1.5-fold stimulation). The vectors using the MSCV LTR, the GALV LTR, and the PGK promoter were the most efficient at transducing primary human CD34+ cord blood progenitors under the conditions employed. High-level GFP expression in the NOD/SCID xenograft model was demonstrated with the pHR' derivative bearing the MSCV LTR. These new lentiviral vector backbones provide a basis for the rational design of improved delivery vehicles for human HSPC gene transfer applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.