Abstract:We study the perturbative behavior of the Yang-Mills gradient flow in the Schrödinger Functional, both in the continuum and on the lattice. The energy density of the flow field is used to define a running coupling at a scale given by the size of the finite volume box. From our perturbative computation we estimate the size of cutoff effects of this coupling to leading order in perturbation theory. On a set of N f = 2 gauge field ensembles in a physical volume of L ∼ 0.4 fm we finally demonstrate the suitability of the coupling for a precise continuum limit due to modest cutoff effects and high statistical precision.
In order to calculate QED corrections to hadronic physical quantities by means of lattice simulations, a coherent description of electrically-charged states in finite volume is needed. In the usual periodic setup, Gauss's law and large gauge transformations forbid the propagation of electrically-charged states. A possible solution to this problem, which does not violate the axioms of local quantum field theory, has been proposed by Wiese and Polley, and is based on the use of C boundary conditions. We present a thorough analysis of the properties and symmetries of QED in isolation and QED coupled to QCD, with C boundary conditions. In particular we learn that a certain class of electricallycharged states can be constructed in a fully consistent fashion without relying on gauge fixing and without peculiar complications. This class includes single particle states of most stable hadrons. We also calculate finite-volume corrections to the mass of stable charged particles and show that these are much smaller than in non-local formulations of QED.
Most studies of sleep and health outcomes rely on self-reported sleep duration, although correlation with objective measures is poor. In this study, we defined sociodemographic and sleep characteristics associated with misreporting and assessed whether accounting for these factors better explains variation in objective sleep duration among 2,086 participants in the Hispanic Community Health Study/Study of Latinos who completed more than 5 nights of wrist actigraphy and reported habitual bed/wake times from 2010 to 2013. Using linear regression, we examined self-report as a predictor of actigraphy-assessed sleep duration. Mean amount of time spent asleep was 7.85 (standard deviation, 1.12) hours by self-report and 6.74 (standard deviation, 1.02) hours by actigraphy; correlation between them was 0.43. For each additional hour of self-reported sleep, actigraphy time spent asleep increased by 20 minutes (95% confidence interval: 19, 22). Correlations between self-reported and actigraphy-assessed time spent asleep were lower with male sex, younger age, sleep efficiency <85%, and night-to-night variability in sleep duration ≥1.5 hours. Adding sociodemographic and sleep factors to self-reports increased the proportion of variance explained in actigraphy-assessed sleep slightly (18%-32%). In this large validation study including Hispanics/Latinos, we demonstrated a moderate correlation between self-reported and actigraphy-assessed time spent asleep. The performance of self-reports varied by demographic and sleep measures but not by Hispanic subgroup.
We present a lattice determination of the Λ parameter in three-flavor QCD and the strong coupling at the Z pole mass. Computing the nonperturbative running of the coupling in the range from 0.2 to 70 GeV, and using experimental input values for the masses and decay constants of the pion and the kaon, we obtain Λ
Circadian clock performance during winter dormancy has been investigated in chestnut by using as marker genes CsTOC1 and CsLHY, which are homologous to essential components of the central circadian oscillator in Arabidopsis. During vegetative growth, mRNA levels of these two genes in chestnut seedlings and adult plants cycled daily, as expected. However, during winter dormancy, CsTOC1 and CsLHY mRNA levels were high and did not oscillate, indicating that the circadian clock was altered. A similar disruption was induced by chilling chestnut seedlings (to 4°C). Normal cycling resumed when endodormant or cold-treated plants were returned to 22°C. The behavior of CsTOC1 and CsLHY during a cold response reveals a relevant aspect of clock regulation not yet encountered in Arabidopsis.chilling ͉ winter dormancy ͉ ecodormancy ͉ cold response W inter dormancy is an important adaptive strategy that enables plants to persist during periods of stressful environmental conditions (1). Dormancy parameters are key determinants in woody plants in agriculture and forestry. Dormancy determines to what degree fruit crops will survive winter and early spring without shoot and flower bud damage, and, in long-lived forest species, the length of rest limits the growing season and thus affects wood production and quality. The onset of winter deep dormancy (endodormancy) is preceded by a stage of ecodormancy. Endodormancy is caused by plant endogenous factors, and, once established,
Diabetes treatment leads to elevated costs both to Brazilian Public Health Care System and society. Costs increased along with duration of disease, level of care and presence of chronic complications, which suggested a need to reallocate health resources focusing on primary prevention of diabetes and its complications.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.