Hippophae rhamnoides L. is an important source of natural antioxidant and antimicrobial agents. Phytochemical compounds, antioxidant and antibacterial properties of berries, and leaf extracts from four Romanian sea buckthorn cultivars were investigated. Large differences in the content of total polyphenols and flavonoids between the varieties were observed. HPLC analysis of the polyphenolic compounds showed greater differences in content in leaves than in berries. This study confirmed that sea buckthorn leaves and berries are a rich source of phenolic compounds, especially quercetin derivatives and hydrocinnamic acid derivatives. Five carotenoid compounds were identified in the berries: lutein, zeaxanthin, β-cryptoxanthin, cis-β-carotene, and β-carotene. From the results obtained in this study, it can be stated that the varieties whose berries yielded the highest quantities of polyphenols, flavonoids, and antioxidant activity, can be ranked as follows: SF6 > Golden Abundant > Carmen > Colosal, and for leaf extracts the ranked order is SF6 > Golden Abundant > Colosal > Carmen. A strong correlation between the total flavonoid yield and antioxidant activity (r = 0.96), was observed. All extracts showed antibacterial activity against S. aureus, B. cereus, and P. aeruginosa, however extracts from berries were less potent than extracts from leaves.
Bee Bread samples from Romania and India were analysed by microscopy and High Performance Liquid Chromatography with Diode Array Detection (HPLC/DAD) and compared with pollen from the correspondent taxa. The quantification of sugars, fructose/glucose ratio, total phenolics and flavonoids was also carried out. From the results was possible to identify Brassica and Eucalyptus samples that present similar HPLC/DAD profiles with the respective ultraviolet (UV) identification of the main compounds as Kaempferol-3-O-glycosides and Hydrocinnamic acid derivatives. The Fructose/Glucose (F/G) ratio and the total amounts of phenolics and flavonoids was in line with the prevalence of the specie identified. These coincident fingerprints gave the identification of the samples, as was previously proposed for bee pollens. This paper relates for the first time the achievement on the taxon carried out previously only for bee pollens. It was reported for the first time that this phenolic profile remains unchanged in the case of floral pollen (hand collected), bee pollen and bee bread. Despite the biochemical transformation that occurs during the fermentation of bee bread, it seems that these phenolic compounds are not affected and remain unchanged. Also, variables such as soil and climate do not seem to influence these compounds for the kind of samples under study.
Beebread is a product of the hive obtained from pollen collected by bees, to which they add honey,digestive enzymes and subsequently is stored in the combs. The bees transform the bee pollen in beebread by an anaerobic fermentation process.A proper hive management promotes beebread collection, aimed at marketing it for human consumption since it can be considered a valuable food supplement due to its content of a wide range of nutrients. Its value is given by the content in protein, amino acids, fatty acids, carbohydrates, mineral salts, polyphenols and flavonoids, which depends on the botanical source of bee pollen. The nutritional and functional composition of beebread is widely reported; nevertheless, few studies on transformation processes of the pollen to improve the availability of the compounds present in this product were found. Overall, beebread is a recent collected and consumed bee product and at this stage it can be used as a food supplement.
Lactobacillus plantarum ATCC 8014 was used to ferment quinoa flour, in order to evaluate its influence on the nutritional and rheological characteristics of both the sourdough and muffins. The quantification of carbohydrates and organic acids was carried out on a HPLC-RID system (high-performance liquid chromatography coupled with with refractive index detector), meanwhile HPLC-UV-VIS (high-performance liquid chromatography coupled with UV-VIS detector), AAS (Atomic absorption spectrophotometry), aluminum chloride colorimetric assay, Folin–Ciocalteu, and 1,1-Diphenyl-2-picrylhydrazyl radical scavenging activity (DPPH) methods were used to determine folic acid, minerals, flavonoids, total phenols, and radical scavenging activity, respectively. Two types of sourdough were used in this study: quinoa sourdough fermented with L. plantarum ATCC 8014 and quinoa sourdough spontaneous fermented. The first one influenced the chemical composition of muffins in terms of decreased content of carbohydrates, higher amounts of both organic acids and folic acid. Furthermore, higher amounts of flavonoids, total phenols and increased radical scavenging activity were recorded due to the use of Lactobacillus plantarum ATCC 8014 strain. These results indicate the positive effect of quinoa flour fermentation with the above strain and supports the use of controlled fermentation with lactic acid bacteria for the manufacturing of gluten free baked products.
Given their beneficial effects in terms of health, the natural products, especially beehive products, have drawn the attention of consumers since long time ago. In order to guarantee the quality of these products on the market, their chemical composition needs to be analyzed. Thus, this current research had as objective the establishment of quality parameters for beehive brood food derived products: apilarnil and queen bee larvae triturate. These two products were compared with royal jelly which is the basis of brood food in the first 3 days of larval stage. The carbohydrates were determined by HPLC-IR and allowed the identification of seven carbohydrate compounds, predominantly glucose, fructose and sucrose. The lipid profile was analyzed by the Soxhlet method. The total protein content was determined by the Kjeldahl method. Free amino acids were analyzed by LC-MS. A total of 31 amino acids were identified of which nine are essential amino acids for humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.